Nihonkai Math. J. Vol.8 (1997), 171-177

WEAK TYPE INEQUALITY FOR POISSON MAXIMAL OPERATORS

YOO, YOON JAE

ABSTRACT. A necessary and sufficient condition for a certain maximal operator to be of weak type (p,q), $1 \le p \le q < \infty$, is studied. This operator unifies various results about the Poisson integral operators cited in the literatures.

I. Introduction Consider the maximal operator

$$\mathcal{M}f(x,t) = \sup\{rac{1}{|Q|}\int_Q |f(y)| \; dy: x\in Q \; ext{and sidelength}(Q)\geq t\}.$$

It is well known that this maximal operator \mathcal{M} controls Poisson integral defined by, for $x \in \mathbf{R}^n, t \geq 0$,

$$P(f)(x,t) = \int_{\mathbf{R}^n} f(y) P(x-y,t) dy,$$

where

$$P(x,t) = \frac{c_n t}{(|x|^2 + t^2)^{\frac{n+1}{2}}}$$

is the Poisson kernel.

For a given positive measure ν on $\overline{\mathbf{R}^{n+1}_{+}} = \{(x,t) : x \in \mathbf{R}^n, t \ge 0\}$, the problem under what conditions \mathcal{M} is bounded from $L^p(\mathbf{R}^n)$ into $L^p(\overline{\mathbf{R}^{n+1}_{+}}, \nu)$ and from $L^1(\mathbf{R}^n)$ into weak- $L^1(\overline{\mathbf{R}^{n+1}_{+}}, \nu)$ was studied by several authors: Carleson[C] showed that \mathcal{M} is bounded from $L^p(\mathbf{R}^n, dx)$ into $L^p(\overline{\mathbf{R}^{n+1}_{+}}, d\nu)$ if and only if ν satisfies the Carleson condition

$$\sup_{x \in Q} \frac{\nu(\tilde{Q})}{|Q|} \le C.$$

Later, Fefferman-Stein[FS] proved that \mathcal{M} is bounded from $L^p(\mathbf{R}^n, w(x)dx)$ into $L^p(\overline{\mathbf{R}^{n+1}_+}, d\nu)$ if

$$\sup_{x\in Q} rac{
u(ilde Q)}{|Q|} \leq Cw(x) \quad a.e. \quad x,$$

where $\tilde{Q} = Q \times (0, l(Q)]$ if we denote l(Q) the sidelength of Q. More recently, Ruiz[R] and Ruiz-Torrea[RT] unified various results concerning these problems.

¹⁹⁹¹ Mathematics Subject Classification. 42B25.

Key words and phrases. maximal operator, A_p -weights, spaces of homogeneous type.