Nihonkai Math. J. Vol.8 (1997), 147-154

HARMONIC MAPS OF COMPLETE RIEMANNIAN MANIFOLDS

SEOUNG DAL JUNG

1. Introduction

The theory of harmonic mappings of a Riemannian manifold into another has been initiated by J. Eells and J. H. Sampson([2]) and studied by many authors. In particular, R. M. Schoen and S. T. Yau([3]) proved the following theorem:

Theorem A. Let M be a complete noncompact Riemannian manifold with nonnegative Ricci curvature and let N be a compact Riemannian manifold of nonpositive sectional curvature. Then every harmonic map of finite energy from M to N is constant.

In this paper, we extend Theorem A under weaker assumptions by using Kato's inequality([1]) and characterize a harmonic map on complete Riemannian manifolds.

The author would like to thank the referee for his helpful and kind suggestions.

2. Preliminaries

Let $\pi: E \to M$ be a Riemannian vector bundle over an m-dimensional manifold M, i.e., E is a vector bundle over M equipped with a C^{∞} -assignment of an inner product <, > to each fiber E_x of E over $x \in M$. Assume that a metric connection D is given on E, i.e., $D: A^p(E) \to A^{p+1}(E)$ is an \mathbb{R} -linear map such that if $f \in A^0$, D(fs) = fDs + sdf and

$$(2.1) d < s, t > = < Ds, t > + < s, Dt >$$

1991 Mathematics Subject Classification. 58E20.

Key words and phrases. Harmonic maps, Kato's inequality, Tension field.

This work was partially supported by Development Fund of Cheju National University, 1997

— 147 —