## ENVELOPE OF HYPERHOLOMORPHY AND HYPERHOLOMORPHIC CONVEXITY

## Dong Guo ZHOU

Nôno investigated the hyperholomorphy of functions of quaternion variables in [13], [14], [15] and [16]. In the present paper, making use of his results [13] and [16] on series expansion and integral representation, for a Riemann's domain  $(\Omega, \varphi)$  over  $\mathbb{C}^2 \times \mathbb{C}^2$ , we define the envelope  $(\tilde{\Omega}, \tilde{\varphi})$  of hyperholomorphy of the domain  $(\Omega, \varphi)$  and prove that the domain  $(\tilde{\Omega}, \tilde{\varphi})$  is hyperholomorphically convex.

## 1. Hyperholomorphic function on a domain in $\mathbb{C}^2 \times \mathbb{C}^2$

The field  $\mathcal{H}$  of quaternions

(1) 
$$z = x_1 + ix_2 + jx_3 + kx_4, \qquad x_1, x_2, x_3, x_4 \in \mathbf{R}$$

is a four dimensional non-commutative R-field generated by four base elements 1, i, j and k with the following non-commutative multiplication rule:

(2) 
$$i^2 = j^2 = k^2 = -1, ij = -ji = k, jk = -kj = i, ki = -ik = j.$$

R. Fueter[7]-[8] and his school established the theory of quaternionic functions, called regular functions, of a quaternionic variable. F. Brackx[1]-[2] also developed the theory of quaternionic functions, called monogenic functions, of a quaternionic variable in the view point of (1).

By the second view point, an element z of the field  ${\cal H}$  of quaternions is regarded as

(3) 
$$z = x_1 + P$$
,  $P = ix_2 + jx_3 + kx_4$ ,  $x_1, x_2, x_3, x_4 \in \mathbb{R}$ .

In the fashion of (3), C. A. Deavours[4] developped the theory of quaternionic regular functions.

As the third view point, we associate two complex numbers

(4) 
$$z_1 := x_1 + ix_2, \quad z_2 := x_3 + ix_4 \in \mathbf{C}$$

to (1), regarding as

$$(5) z = z_1 + z_2 j \in \mathcal{H}.$$

Thus, we identify  $\mathcal{H}$  with  $C^2 \cong \mathbb{R}^4$  and speak of the topology of  $\mathcal{H}$ . We define the non-commutative multiplication of two quaternions  $z = z_1 + z_2 j, w = w_1 + w_2 j \in \mathcal{H}$  by

(6) 
$$zw := (z_1w_1 - z_2\overline{w_2}) + (z_1w_2 + z_2\overline{w_1})j \in \mathcal{H}$$