Regularity of the solutions of some hypoelliptic operators

Moustafa K. Damlakhi Department of Mathematics, College of Science King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia

Abstract. Let P(D) be an hypoelliptic operator with constant coefficients, having a fundamental solution that is locally integrable in \mathbb{R}^n . Let u be a distribution defined on an open set Ω in \mathbb{R}^n such that Pu = f. It's proved that if $f \in L^1_{loc}(\Omega)$ then $u \in L^1_{loc}(\Omega)$ and if f is in $C^m(\Omega)$ so is u.

1. Introduction.

Let Ω be a domain in \mathbb{R}^n , $n \geq 1$. Let $A = \sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha}$ be a differential operator of order m with $a_{\alpha} \in C^m(\Omega)$. Let A^* denote the adjoint operator of A. Let $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. If $f \in L^p(\Omega)$, it is proved in [1], there exists a weak solution of $Au = f, u \in L^p(\Omega)$ and $||u||_p \leq c$ if and only if $||x||_p \leq c ||x||_p \leq c ||x||_p$

Now it is known that if $P = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha}$ is a hypoelliptic differential operator of order m with constant coefficients and Ω is a convex open set of \mathbb{R}^n , then for any $T \in D'(\Omega)$, there exists a distribution $u \in D'(\Omega)$ such that Pu = T (see [2]). If we suppose moreover that P is elliptic, then the above result is true even if Ω is

AMS subjects classification: 35H05

Key words and phrases: Hypoelliptic operators, fundamental solutions