SOME GENERALIZED THEOREMS ON p-QUASIHYPONORMAL OPERATORS FOR 0

MI YOUNG LEE AND SANG HUN LEE

ABSTRACT. Let T = U|T| be the polar decomposition of *p*-quasihyponormal for $0 . Then the operator <math>\tilde{T}_{\epsilon} = |T|^{\epsilon}U|T|^{1-\epsilon}$, $0 < \epsilon \leq \frac{1}{2}$, is $(p + \epsilon)$ quasihyponormal if $p + \epsilon < 1$ and is quasihyponormal if $p + \epsilon \geq 1$. And we will prove that every *p*-quasihyponormal operator is paranormal and give an example to show that the converse is not true.

1. Introduction. Let \mathcal{H} be a Hilbert space and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be *p-hyponormal* if $(T^*T)^p \ge (TT^*)^p$ for p > 0. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be p-quasihyponormal if $T^*((T^*T)^p - (TT^*)^p)T \ge 0$ for p > 0. If p = 1, then T is quasihyponormal and if $p = \frac{1}{2}$, then T is semi-quasihyponormal. It is well known that a p-quasihyponormal operator is a q-quasihyponormal operator for $q \leq p$. But the converse is not true in general. Also, it is immediate that every p-hyponormal operator is p-quasihyponormal but not necessarily conversely(see [4]). Hyponormal operators and quasihyponormal operators have been studied by many authors(see [9] and [11]). The p-hyponormal operator was first introduced by A. Aluthge and he studied basic properties of p-hyponormal operators(see [1] and [2]). Recently, S. C. Arora and P. Arora [4] introduced *p*-quasihyponormal as a generalization of quasihyponormal, and the operator $\tilde{T} = |T|^{\frac{1}{2}} U |T|^{\frac{1}{2}}$, where T = U |T| is the polar decomposition of T. And they studied some properties of p-quasihyponormal using the operator $\tilde{T} = |T|^{\frac{1}{2}} U |T|^{\frac{1}{2}}.$

For a *p*-quasihyponormal operator T = U|T|, in section 2 we will introduce the operator $\tilde{T}_{\epsilon} = |T|^{\epsilon}U|T|^{1-\epsilon}$, $0 < \epsilon \leq \frac{1}{2}$, which is $(p + \epsilon)$ -quasihyponormal if $p + \epsilon < 1$ and is quasihyponormal if $p + \epsilon \geq 1$. In section 3, we will prove

¹⁹⁹¹ Mathematics Subject Classification. 47B20.

This work was partially supported by TGRC-KOSEF and the Basic Science Research Institute Program(BSRI-97-1401)