CURVATURE-ADAPTED SUBMANIFOLDS

Jürgen Berndt and Lieven Vanhecke

Abstract

We show that the classification of curvature-adapted submanifolds in \mathfrak{P} -spaces can be reduced to that of curvature-adapted hypersurfaces by using tubes about submanifolds. Moreover, we treat the special case of non-flat complex and quaternionic space forms. This leads to a complete classification of the curvature-adapted submanifolds in quaternionic projective spaces.

1. Introduction

In this note we study a certain class of submanifolds whose extrinsic curvature is adapted in a natural way to the intrinsic curvature of the ambient Riemannian manifold. A general measure for the extrinsic curvature of a submanifold is provided by all the shape operators A_{ξ} with respect to normal vectors ξ . Given a normal vector ξ to a submanifold, the Jacobi operator $R_{\xi} := R(.,\xi)\xi$ measures the intrinsic curvature of the ambient Riemannian manifold \overline{M} in the direction of ξ . Here, R denotes the Riemannian curvature tensor of \overline{M} . Both A_{ξ} and R_{ξ} are self-adjoint operators; their eigenvalues represent extremal curvatures, and their eigenspaces point out directions for which the curvature becomes extremal. We say that a submanifold M of a Riemannian manifold \overline{M} is curvature-adapted if for every normal vector ξ to M, say at $p \in M$, the Jacobi operator R_{ξ} leaves the tangent space T_pM of M at p invariant, that is, if

(1)
$$R_{\ell}(T_{\mathfrak{p}}M) \subset T_{\mathfrak{p}}M,$$

and if there exists a basis of T_pM consisting of eigenvectors both of A_{ξ} and $K_{\xi} := R_{\xi}|T_pM$, that is, if

1980 Mathematics Subject Classification (1985 Revision). 53C35, 53C40, 53C55. Keywords. Curvature-adapted or compatible submanifolds. P-spaces, tubes and focal sets, complex and quaternionic space forms.