The Order of Starlikeness and Convexity of Confluent Hypergeometric Functions

KHALIDA INAYAT NOOR

ABSTRACT

We determine the conditions for which confluent hypergeometric functions are convex and starlike of order α .

Key Words and Phrases: Confluent hypergeometric functions, convex, starlike of order α , convolution, linear operator, radius of convexity. 1980 Mathematics Classification (1985 Revision), 33A30, 30C45.

1. INTRODUCTION

Let A denote the class of analytic functions f in the unit disk $E = \{z: |z| < 1\}$ with f(0) = 0, f'(0) = 1. We denote by S the subclass of A consisting of univalent functions. A function $f \in S^*(\alpha)$ S, $0 < \alpha < 1$, if and only if $Re \frac{zf'(z)}{f(z)} > \alpha$, $z \in E$. We call f a starlike function of order α in E. Also, a function $f \in S$, satisfying $Re = \{\frac{(zf'(z))'}{f'(z)}\} > \alpha$, $0 < \alpha < 1$, $z \in E$, is called a convex function of order α and we denote the class consisting of such functions as $C(\alpha)$.

It is clear that

$$f \in C(\alpha)$$
 if, and only if, $zf' \in S^*(\alpha)$, (1.1)

Let c be a complex numbers with $c \neq 0, -1, -2, \ldots$, and consider the function defined by

$$\phi(a;c;z) = {}_{1}F_{1}(a;c;z) = 1 + \frac{a}{c} \frac{z}{1!} + \frac{a(a+1)}{c(c+1)} \frac{z^{2}}{2!} + \dots$$
 (1.2)

This function is called Confluent (or Kummer) hypergeometric function and it is analytic in C. It satisfies Kummer's hypergeometric differential equation

$$zw''(z) + (c-z)w'(z) - aw(z) = 0$$
 (1.3)
If we let $(d)_k = \frac{\Gamma(d+k)}{\Gamma(d)}$
 $= d(d+1)...(d+k-1),$