Weighted composition operators between weighted Bergman spaces in the unit ball of \mathbb{C}^n

Sei-ichiro Ueki

Abstract

Let φ be a holomorphic self-map of the unit ball B in \mathbb{C}^n and ψ a holomorphic function in B. Let $A^p(\nu_\alpha)$ denote the weighted Bergman space in B. In this paper, we characterize the boundedness and the compactness of the weighted composition operator $W_{\varphi,\psi}: f \mapsto \psi(f \circ \varphi)$ from $A^p(\nu_\alpha)$ into $A^q(\nu_\beta)$ $(0 , in terms of the Carleson-type measures. We also consider the boundedness and the compactness of <math>W_{\varphi,\psi}: A^p(\nu_\alpha) \to H^\infty(B)$, the space of the bounded holomorphic functions in B.

1 Introduction

Throughout this paper, let n be a fixed integer. Let B and S denote the unit ball and the unit sphere of the complex n-dimensional Euclidean space \mathbb{C}^n , respectively. Let ν and σ denote the normalized Lebesgue measures on B and S, respectively. For each $\alpha \in (-1, \infty)$, we set $c_{\alpha} = \Gamma(n + \alpha + 1)/\{\Gamma(n + 1)\Gamma(\alpha + 1)\}$ and $d\nu_{\alpha}(z) = c_{\alpha}(1 - |z|^2)^{\alpha}d\nu(z)$ ($z \in B$). Note that $\nu_{\alpha}(B) = 1$. Let H(B) denote the space of all holomorphic functions in B. For each $p \in (0, \infty)$ and $\alpha \in (-1, \infty)$, the weighted Bergman space $A^p(\nu_{\alpha})$ and the Hardy space $H^p(B)$ are defined by

$$A^{p}(\nu_{\alpha}) = \left\{ f \in H(B) : \|f\|_{A^{p}(\nu_{\alpha})}^{p} \equiv \int_{B} |f|^{p} d\nu_{\alpha} < \infty \right\},$$

$$H^{p}(B) = \left\{ f \in H(B) : \|f\|_{H^{p}}^{p} \equiv \sup_{0 < r < 1} \int_{S} |f_{r}|^{p} d\sigma < \infty \right\},$$

where $f_r(z) = f(rz)$ for $r \in (0,1)$, $z \in \mathbb{C}^n$ with $rz \in B$. For convenience' sake, the spaces $H^p(B)$ are denoted by the symbols $A^p(\nu_{-1})$ $(0 . Note that <math>\lim_{\alpha \downarrow -1} \|f\|_{A^p(\nu_\alpha)} = \|f\|_{H^p}$ for $p \in (0,\infty)$ and $f \in H(B)$. (See [1, §0.3 and p.25].)

2000 Mathematics Subject Classification: Primary 32A35, 32A36; Secondary 47B38. Key words and phrases: Bergman spaces, Hardy spaces, weighted composition operators, unit ball of \mathbb{C}^n .