SOME LINEAR FUNCTIONAL AND FOURIER TRANSFORM OVER $\mathcal{K}'_{e,k}$

BYUNG KEUN SOHN

ABSTRACT. We introduce the space $\mathcal{K}_{e,k}$ that is the vector space of all C^{∞} - functions f such that $exp(e^{k|x|})\partial^{\alpha}f$ vanishes at infinity for all $\alpha \in N^n, k \in \mathbb{Z}, k < 0$ and its dual $\mathcal{K}'_{e,k}$. For $f,g \in \mathcal{K}'_{e,k}$, we study the linear functional $f \circledast g$ on $\mathcal{K}_{e,k}$ defined by

$$< f \circledast g> \ = \ < f(x), < g(y), \phi(x+y)>>, \quad \phi \in \mathcal{K}_{e,k}.$$

Also, we show a representation theorem for the usual distributional Fourier transform over the spaces $\mathcal{K}'_{e,k}$, and an inversion formula which enables to prove that $\mathcal{K}'_{e,k}$ is a commutative algebra with unit element with respect to \circledast

1. Introduction

The Schwartz space \mathcal{S} is the space of all infinitely differentiable function f on R^n such that $(1+|x|^2)^k\partial^{\alpha}f(x)$ vanishes at infinity for all $k\in Z$ and all $\alpha\in N^n$. The space \mathcal{S} is equipped with the locally convex topology defined by the family $(q_{k,\alpha})$ of seminorms $(q_{k,\alpha})=(1+|x|^2)^k|\partial^{\alpha}f(x)|$, where k runs through N and α through N^n . By \mathcal{S}' , we mean the space of continuous linear functionals on \mathcal{S} . Motivated by the Schwartz space \mathcal{S} , \mathcal{S} . Horváth introduced the space \mathcal{S}_k , k is a fixed integer, that is defined as the vector space of all functions f on R^n such that $(1+|x|^2)^k\partial^{\alpha}f(x)$ vanishes at infinity for all $\alpha\in N^n$ in [3]. Horváth defined on \mathcal{S}_k the seminorms $(\mu_{k,\alpha})=(1+|x|^2)^k|\partial^{\alpha}f(x)|$ for a fixed k and every $\alpha\in N^n$. And B.J.Gonzalez and E.R.Negrin studied the convolution and Fourier transform over $\mathcal{S}_k, k\in Z, k<0$, in [1] and [2], respectively.

In the meantime, the Schwartz space \mathcal{S} is extended by G. Sampson and Z. Zielezny in [5]. They introduced the space $\mathcal{K}_p, p > 1$, of the space of all infinitely differentiable functions f on R^n such that $e^{k|x|^p}\partial^{\alpha}f(x)$ vanishes at infinity for all $k \in \mathbb{Z}$ and all $\alpha \in \mathbb{N}^n$. The space $\mathcal{K}_p, p > 1$, is equipped with the locally convex topology defined by the family of seminorms $(\gamma_{k,\alpha}) = e^{k|x|^p} |\partial^{\alpha}f(x)|$, where k runs

Key words and phrases. linear functional, Fourier transform.

2000 Mathematics Subject Classifications. 46F10, 46F05

E-mail address: mathsohn @ ijnc.inje.ac.kr

This work was supported by Inje Research and Scholarship Foundation Grant 2003-2004

Typeset by AMS-TFX