GROWTH SEQUENCES FOR FLAT DIFFEOMORPHISMS OF THE INTERVAL

NOBUYA WATANABE

1. Introduction and statement of results

Let f be a C^1 -diffeomorphism of the interval [0;1]. We define a growth sequence for f by

$$\Gamma_n(f) = \exp||\log Df^n|| = \max(||Df^n||, ||Df^{-n}||),$$

where f^n is nth iteration of f and $||Df^n|| = \max_{x \in [0,1]} |Df^n(x)|$.

Let Fix(f) be the set of fixed points of f. In the case f is of class C^r , for $x \in Fix(f)$ x is called r-flat if Df(x) = 1 and $D^n f(x) = 0$ for $2 \le n \le [r]$. f is called r-flat if every $x \in Fix(x)$ is r-flat.

In this paper, we answer the question raised in the paper by L. Polterovich and M. Sodin [2]. We show:

Theorem 1. Let f be a 2-flat diffeomorphism of the interval. Then,

$$\lim_{n\to\infty}\frac{\Gamma_n(f)}{n^2}=0.$$

Theorem 2. There exists an ∞ -flat diffeomorphism f of the interval such that for every $\alpha < 2$,

$$\limsup_{n\to\infty}\frac{\Gamma_n(f)}{n^\alpha}=\infty.$$

Independently, A. Borichev shows similar results [1].

2. PROOF OF THEOREM 1

The argument in Proof of Theorem 1 is a slight modification of its in [2]. The following is useful.

Lemma 3. (Denjoy) Let f be a C^2 -diffeommorphism of [0;1]. If $J \in [0;1]$ is a closed interval such that $\operatorname{Int}(J) \cap f(\operatorname{Int}(J)) = \emptyset$ then there exists a positive constant C depending on f such that for every $n \in \mathbb{N}$ and every $x, y \in J$

$$\frac{1}{C} \le \frac{Df^n(x)}{Df^n(y)} \le C.$$