On extension of representations of so(n+1, 1) to representations of so(n+1, 2)

Kiyotaka II

Abstract

In the present paper, we construct representations of the Lie algebra so(n+1,2) on $C^{\infty}(S^n)$ by extending a representation of the Lie algebra so(n+1,1) on $C^{\infty}(S^n)$ which arises from the action of Lorentz group SO(n+1,1) on S^n as conformal transformations.

1 Introduction and statement of the result

Let \mathbf{R}^{n+1} be (n+1)-dimensional Euclidean space with cartesian coordinates x_1,\ldots,x_{n+1} . For $x=(x_1,\ldots,x_{n+1})\in\mathbf{R}^{n+1}$, the norm of x is defined by $||x||=\sqrt{(x_1)^2+\cdots+(x_{n+1})^2}$. Let $S^n=\{x\in\mathbf{R}^{n+1}\mid ||x||=1\}$ be the unit sphere in \mathbf{R}^{n+1} . Let $C^\infty(S^n)$ denote the linear space of complex-valued C^∞ functions on S^n . The special orthogonal group SO(n+1) acts on S^n as an isometry group. This action induces a representation of the Lie algebra so(n+1) on $C^\infty(S^n)$. Let SO(n+1,1) denote the Lorentz group with its Lie algebra so(n+1,1). It is well-known that the action of SO(n+1) on S^n can be extended to an action of SO(n+1,1) on S^n . This action induces an irreducible representation of the Lie algebra so(n+1,1) on $C^\infty(S^n)$. We denote this representation by $\operatorname{Rep}_0(so(n+1,1))$.

Let us now consider the Lie algebra so(n+1,2) of the Lie group SO(n+1,2). Let E_{ij} denote the $(n+3)\times(n+3)$ matrix with the (i,j)-component 1 and the others are 0. The following are basis of so(n+1,2).

$$\begin{split} E_{ij} - E_{ji} &\quad (1 \leq i < j \leq n+1), \\ E_{j,n+2} + E_{n+2,j} &\quad (1 \leq j \leq n+1), \\ E_{j,n+3} + E_{n+3,j} &\quad (1 \leq j \leq n+1), \\ E_{n+2,n+3} - E_{n+3,n+2}. \end{split}$$