Extremals for families of plane quasiconformal mappings

Shinji YAMASHITA

Abstract

Let $\mathscr{F}(K)$ be the family of K-quasiconformal mappings from the Riemann sphere $\mathbb{C}^{\#}$ onto $\mathbb{C}^{\#}$, which preserve reals, and moreover, which have three fixed points, -1, 0, and ∞ . For real t let $\lambda(K, t)$ and $\nu(K, t)$ be the supremum and the infimum, respectively, of the values f(t) for f ranging over the family $\mathscr{F}(K)$. Among others we shall express X(K, t) for $X = \lambda, \nu$, in terms of extremals for various families of K-quasiconformal self-mappings of $\mathbb{C}^{\#}$.

1 Introduction

Let $\mathscr{Q} = \mathscr{Q}(K)$ be the family of all the K-quasiconformal mappings from the Riemann sphere $\mathbb{C}^{\#} = \{|z| \leq +\infty\}$ onto $\mathbb{C}^{\#}$. Three families with the inclusion formulae $\mathscr{F} \subset \mathscr{G} \subset \mathscr{H}$ \mathscr{H} are then defined by $\mathscr{H} = \mathscr{H}(K) = \{ f \in \mathscr{Q}; f(0) = 0, f(\infty) = \infty \}; \quad \mathscr{G} = \mathscr{G}(K) = \{ f \in \mathscr{H}; f(-1) = -1 \}; \quad \mathscr{F} = \mathscr{F}(K) = \{ f \in \mathscr{G}; f(\mathbb{R}) = \mathbb{R} \}$, where \mathbb{R} is the set of all the real numbers, so that $\mathbb{C} = \mathbb{R}^2$ is the complex plane.

In [KY] we studied

$$\lambda(K,t) = \sup_{f \in \mathscr{F}(K)} f(t)$$
 and $\nu(K,t) = \inf_{f \in \mathscr{F}(K)} f(t)$

for $t \in \mathbb{R}$ in detail. Since $\mathscr{F}(K)$ is normal, $\lambda(K,t)$ and $\nu(K,t)$ are the maximum and the minimum, respectively. In particular, $\nu(K,t) \leq t \leq \lambda(K,t)$ for all $t \in \mathbb{R}$ and trivially, X(K,t) = t for $X = \lambda, \nu$, and $t = -1, 0, \infty$; moreover, $X(1,t) \equiv t$. Furthermore, $\nu(K,t) > 0$ for all t > 0. For a fixed $K \ge 1$ the function X(K,t) is increasing for $t \in \mathbb{R}$. For fixed t > 0 the functions $\lambda(K,t)$ and $\nu(K,t)$ are increasing and decreasing functions of $K \ge 1$,

— 31 —

²⁰⁰⁰ Mathematics Subject Classification: Primary 30C62; Secondary 30C75.

Key Words and Phrases. The family \mathcal{Q} of quasiconformal self-mappings of the Riemann sphere; subfamilies \mathcal{F}, \mathcal{G} , and \mathcal{H} of \mathcal{Q} ; maximum and minimum of f(t) for varying $f \in \mathcal{F}$.