Growth of transcendental entire solution of some q-difference equation

Ilham Eli, Kayoko Gotoh and Niro Yanagihara

Abstract

We consider a linear q-difference equation $q z f(q z)+(1-A z) f(z)=1$, with $q=e^{2 \pi i \beta}, \beta \in(0,1) \backslash \mathbb{Q}$ and $A=e^{2 \pi i \alpha}, \alpha \in(0,1)$. The equation is known to admit a transcendental entire solution $f(z)$ for suitably chosen β and α. We will show here that $f(z)$ is of positive order for some β, contrary to q-difference equations with $|q| \neq 0,1$.

Keywords and phrases: linear q-difference equation, growth of entire function.

AMS Subject Classification: 39A13, 30D20

1 Introduction

We consider here a q-difference equation

$$
\begin{equation*}
b_{p}(z) f\left(q^{p} z\right)+\cdots+b_{0}(z) f(z)=\mathfrak{b}(z), \quad b_{j}(z), \mathfrak{b}(z) \in \mathbb{C}[z], \tag{1.1}
\end{equation*}
$$

with $b_{j}(z)=\sum_{k=0}^{B_{j}} b_{k}^{(j)} z^{k} \quad\left(b_{B_{j}}^{(j)} \neq 0\right), 0 \leq j \leq p$.
When $|q| \neq 0,1$, a transcendental entire solution $f(z)$ of (1.1) are of order 0 . In fact, when $0<|q|<1$, it satisfies

$$
\log M(r, f)=\frac{\sigma}{-2 \log |q|}(\log r)^{2}(1+o(1)), \quad r \rightarrow \infty
$$

in which σ is a slope of the Newton diagram for (1.1) [1].
When $|q|=1$, that is $q=e^{2 \pi i \lambda}$, there is no such regularity. For example, when $q=-1, \lambda=1 / 2$, the equation $f(-z)-f(z)=0$ has solutions of behaviors of several type. We ask here what can be said for the case that

$$
\begin{equation*}
q=e^{2 \pi i \beta}, \quad \beta \in(0,1) \backslash \mathbb{Q} . \tag{1.2}
\end{equation*}
$$

Driver et al. [3] showed that there exist (q, A), with q in (1.2) and $A,|A|=1$, such that the equation

$$
\begin{equation*}
q z f(q z)+(1-A z) f(z)=1 \tag{1.3}
\end{equation*}
$$

has a transcendental entire solution. We will show here the following theorem, contrary to the case $|q| \neq 0,1$:
Theorem 1.1 The solution $f(z)$ of (1.3) is of positive order, supposed β in (1.2) is suitably chosen, as shown at the end of the proof.

