Growth of transcendental entire solution of some q-difference equation

Ilham Eli, Kayoko Gotoh and Niro Yanagihara

Abstract

We consider a linear q-difference equation qzf(qz) + (1-Az)f(z) = 1, with $q = e^{2\pi i\beta}, \beta \in (0,1) \setminus \mathbb{Q}$ and $A = e^{2\pi i\alpha}, \alpha \in (0,1)$. The equation is known to admit a transcendental entire solution f(z) for suitably chosen β and α . We will show here that f(z) is of positive order for some β , contrary to q-difference equations with $|q| \neq 0, 1$.

Keywords and phrases: linear q-difference equation, growth of entire function.

AMS Subject Classification: 39A13, 30D20

1 Introduction

We consider here a q-difference equation

(1.1)
$$b_{\mathfrak{p}}(z)f(q^{\mathfrak{p}}z) + \cdots + b_{0}(z)f(z) = \mathfrak{b}(z), \quad b_{j}(z), \ \mathfrak{b}(z) \in \mathbb{C}[z],$$

with $b_j(z) = \sum_{k=0}^{B_j} b_k^{(j)} z^k \ (b_{B_j}^{(j)} \neq 0), 0 \le j \le p.$

When $|q| \neq 0, 1$, a transcendental entire solution f(z) of (1.1) are of order 0. In fact, when 0 < |q| < 1, it satisfies

$$\log M(r,f) = \frac{\sigma}{-2\log|q|} (\log r)^2 (1+o(1)), \quad r \to \infty,$$

in which σ is a slope of the Newton diagram for (1.1) [1].

When |q| = 1, that is $q = e^{2\pi i\lambda}$, there is no such regularity. For example, when $q = -1, \lambda = 1/2$, the equation f(-z) - f(z) = 0 has solutions of behaviors of several type. We ask here what can be said for the case that

(1.2)
$$q = e^{2\pi i\beta}, \quad \beta \in (0,1) \setminus \mathbb{Q}.$$

Driver et al. [3] showed that there exist (q, A), with q in (1.2) and A, |A| = 1, such that the equation

(1.3)
$$qzf(qz) + (1 - Az)f(z) = 1$$

has a transcendental entire solution. We will show here the following theorem, contrary to the case $|q| \neq 0, 1$:

Theorem 1.1 The solution f(z) of (1.3) is of positive order, supposed β in (1.2) is suitably chosen, as shown at the end of the proof.