THE CONDITIONS THAT THE TOEPLITZ OPERATOR IS NORMAL OR ANALYTIC

Takashi YOSHINO

Abstract. P. R. Halmos [6; Problem 5] asked whether every subnormal Toeplitz operators on H^2 was either analytic or normal. A negative example was given by C. C. Cowen and J. J. Long [5; Theorem]. In this paper, we shall give the conditions that the Toeplitz operator T_{φ} is normal or analytic and show, as their applications, the following results: (1) If T_{φ} is hyponormal with $\mathcal{N}_{T_{\varphi}} \cdot T_{\varphi} - T_{\varphi} T_{\varphi} \cdot T_{\varphi} = \{f \in H^2 : (T_{\varphi}^* T_{\varphi} - T_{\varphi} T_{\varphi}^*)f = o\}$ as its invariant subspace and if $\mathcal{N}_{H_{\varphi}} \cup \mathcal{N}_{H_{\varphi}} \neq \{o\}$, then T_{φ} is normal or analytic ([1; Theorem]) and (2) Every quasi-normal Toeplitz operator is only normal or a scalar multiple of an isometry ([2; Theorem]).

1. Preliminaries. A bounded measurable function $\varphi \in L^{\infty}$ on the circle induces the multiplication operator on L^2 called the Laurent operator L_{φ} given by $L_{\varphi}f = \varphi f$ for $f \in L^2$. And the Laurent operator induces in a natural way twin operators on H^2 called **Toeplitz operator** T_{φ} given by $T_{\varphi}f = PL_{\varphi}f$ for $f \in H^2$, where P is the orthogonal projection from L^2 onto H^2 and **Hankel operator** H_{φ} given by $H_{\varphi}f = J(I-P)L_{\varphi}f$ for $f \in H^2$, where J is the unitary operator on L^2 defined by $J(z^{-n}) = z^{n-1}$, $n = 0, \pm 1, \pm 2, \cdots$. The following results are well known.

Proposition 1. ([3; Theorem IV]) If \mathcal{M} is a non-zero invariant subspace of T_z , then there exists an isometric Toeplitz operator T_g uniquely, up to a unimodular constant, such that $\mathcal{M} = T_g H^2$.

Mathematics Subject Classification 2000 : 47B35 Keywords : Toeplitz operators