On Ricci curvature of CR-submanifolds with rank one totally real distribution

Tooru Sasahara

Abstract

In a recent paper, Bang-yen Chen obtained sharp inequalities between the maximum Ricci curvature and the squared mean curvature for arbitrary submanifolds in real space forms and totally real submanifolds in complex space forms ([6, 7]). In this paper we give sharp inequalities between the maximum Ricci curvature and the squared mean curvature for arbitrary submanifolds in complex space form. Moreover we investigate CR-submanifolds in complex space forms and in the nearly Kaehler six-sphere which realize the equality case of the inequalities mentioned above.

1991 Mathematics Subject Classification. Primary 53C40; Secondary 53C42.

Key words and phrases. maximum Ricci curvature, CR-submanifold, normal almost contact metric structure.

1 Introduction

Let M^n be an *n*-dimensional submanifold of an *m*-dimensional manifold \tilde{M}^m . Denote by *h* the second fundamental form of M^n in \tilde{M}^m . Then the mean curvature vector \vec{H} of the immersion is given by $\vec{H} = \frac{1}{n}$ trace *h*. A submanifold is said to be minimal if its mean curvature vector vanishes identically. Denote by *D* the linear connection induced on the normal bundle $T^{\perp}M^n$ of M^n in \tilde{M}^m , by *R* and \tilde{R} the Riemann curvature tensors of *M* and of \tilde{M}^m respectively, and by R^D the curvature tensor of the normal connection *D*. Then the equation of Gauss and Ricci are given respectively by

$$R(X,Y)Z = \left\langle A_{h(Y,Z)}X,W\right\rangle - \left\langle A_{h(X,Z)}Y,W\right\rangle + \tilde{R}(X,Y)Z$$
(1.1)

$$R^{D}(X,Y;\xi,\eta) = \tilde{R}(X,Y;\xi,\eta) + \langle [A_{\xi},A_{\eta}](X),Y\rangle$$
(1.2)

for vectors X, Y, Z, W tangent to M and ξ, η normal to M, where A is the shape operator. For the second fundamental form h, we define the covariant derivative $\overline{\nabla}h$ of h with respect to the connection on $TM \oplus T^{\perp}M$ by

$$(\bar{\nabla}_X h)(Y,Z) = D_X(h(Y,Z)) - h(\nabla_X Y,Z) - h(Y,\nabla_X Z).$$
(1.3)

The equation of Codazzi is given by

$$(\tilde{R}(X,Y)Z)^{\perp} = (\bar{\nabla}_X h)(Y,Z) - (\bar{\nabla}_Y h)(X,Z).$$

$$(1.4)$$

The Ricci tensor S and the scalar curvature τ at a point $p \in M^n$ are given respectively by $S(X,Y) = \sum_{i=1}^n \langle R(e_i,X)Y,e_i \rangle$ and $\tau = \sum_{i=1}^n S(e_i,e_i)$, where $\{e_1,\ldots,e_n\}$ is an orthonormal basis of the tangent space $T_p M^n$.

- 47 -