Nihonkai Math. J. Vol.1(1990), 121-135

Shifts with two generators on the hyperfinite \mathbb{I}_1 -factor

Keiichi Watanabe

1. Introduction

R. T. Powers([6]) introduced a concept of a shift on the hyperfinite \mathbb{I}_1 -factor \Re , which is an identity preserving *-endmorphism σ such that $\bigcap_{k=1}^\infty \sigma^k(\Re) = \mathbb{C}1$. He defined the index of σ as the Jones index $[\Re:\sigma(\Re)]$. He discussed on conjugacy or on outer conjugacy of binary shifts which is a class of shifts of index two on \Re . A shift σ on \Re is said to be a binary shift if there is a unitary element $u \in \Re$ with $u^2 = 1$ which satisfies $\Re = \{\sigma^k(u) \ ; \ k \ge 0\}$ " and $u\sigma^k(u) = \pm \sigma^k(u)u$ for $k \in \mathbb{N}$. There are uncountably many non conjugate, at least countably many non outer conjugate binary shifts on \Re . Enomoto, Choda and Watatani considered a general shift σ on a group von Neumann algebra $\Re_m(G)$ on a group G twisted by a multiplier m such that the shift σ is induced from a shift on G, and they generalized results of Powers' binary shifts. Bures and Yin also independently studied the shifts as mentioned above.

In this paper we consider a class of shifts which have two generators in a sense. At first, we shall show that a shift with two