Some hypersurfaces in a Euclidean space

By

Kouei SEKIGAWA

(Received Nov. 30, 1970)

1. Introduction.

The Riemannian curvature tensor R of a locally symmetric Riemannian manifold (M, g) satisfies

(*)
$$R(X, Y) \cdot R = 0$$
, for any tangent vectors X and Y,

where the endomorphism R(X, Y) operates on R as a derivation of the tensor algebra at each point of M. A result of K. Nomizu [2] tells us that the converse is affirmative in the case where M is a certain hypersurface in a Euclidean space. That is

THEOREM A. Let M be an m-dimensional, connected and complete Rimannian manifold which is isometrically immersed in a Euclidean space E^{m+1} so that the type number $k(x) \ge 3$ at least at one point x. If M satisfies the condition (*), then it is of the form $M = S^k \times E^{m-k}$, where S^k is a hypersphere in a Euclidean subspace E^{k+1} of E^{m+1} and E^{m-k} is a Euclidean subspace orthogonal to E^{k+1} .

Now, let R_1 be the Ricci tensor of M and R^1 be the symmetric endomorphism given by $R_1(X, Y) = g(R^1X, Y)$. Then, the condition (*) implies in particular

(**)
$$R(X, Y) \cdot R_1 = 0$$
, for any tangent vectors X and Y.

Recently, S. Tanno [4] gave the following

Theolem B. Let M be an m-dimensional, connected and complete Rimannian manifold which is isometrically immersed in a Euclidean space E^{m+1} so that the type number $k(x) \ge 3$ at least at one point x. If M satisfies the condition (**) and have the positive scalar curvature, then it is of the form $M=S^k \times E^{m-k}$.

In the present paper, we shall show that the assumption of having the positive scalar curvature in theorem B can be replaced by some other conditions. That is:

THEOREM C. Let M be an m-dimensional, connected and complete Riemannian manifold which isometrically immered in a Euclidean space E^{m+1} so that M is not minimal and the type number $k(x) \ge 3$ at least at one point x. If M satisfies the condition (**), then it is of