C*-algebras having the property (T)

By

Tadashi HURUYA

(Received Nov. 30, 1970)

1. Introduction

If A and B are C*-algebras, $A \odot B$ denotes their algebraic tensor product. A norm $\| \|_{\beta}$ in $A \odot B$ is called *compatible* if the completion of $A \odot B$ by $\| \|_{\beta}$ becomes a C*-algebra, and we denote by $A \otimes_{\beta} B$ the C*-algebra which is the completion of $A \odot B$ with respect to $\| \|_{\beta}$. There are some ways to define compatible norms in $A \odot B$. T. Turumaru [5] introduced the α -norm. As A. Wulfsohn established, the α -norm has the property:

$$\|\sum_{k=1}^{n} x_k \otimes y_k\|_{\alpha} = \|\sum_{k=1}^{n} \pi_1(x_k) \otimes \pi_2(y_k)\|, \ x_k \in A, \ y_k \in B$$

where π_1 and π_2 are any faithful representations of A and B, respectively. M. Takesaki proved in [4] that the α -norm is not necessarily the unique compatible norm in $A \odot B$ and that it is the least one among the all compatible norms.

On the other hand, A. Guichardet defined the ν -norm and showed that it is the greatest one among the all compatible norms. The ν -norm is defined by the formula

$$\|x\|_{\nu} = \sup \|\pi(x)\|, x \in A \odot B$$

where π runs over the set of all representations of $A \odot B$ which are continuous with respect to any compatible norm in $A \odot B$.

We say that a C*-algebra A has the property (T) if, for every C*-algebra B, the α -norm in $A \odot B$ is the unique compatible norm.

This papar is concerned with C*-algebras having the property (T). In § 2, we consider the structure of C*-algebras having the property (T). In §3, we apply the consideration in §2 to tensor products of C*-algebras. Finally in §4 we present that a C*-algebra A has the greatest closed two-sided ideal I having the property (T) and it is the least one such that A/I has no nonzero closed two-sided ideals having the property (T).