Positive linear maps of Banach algebras with an involution

By

Seiji WATANABE

(Received Nov. 30, 1970)

1. Introduction

A linear map $T: A \to B$ is called a *positive linear map* if $T(A^+) \subset B^+$, where A and B are complex Banach *-algebras, and, A^+ and B^+ are the sets of all finite sums of the form $x^*x(x \in A \text{ or } x \in B)$ In [7], we investigated some properties of positive linear maps of Banach *-algebras. In this paper, we shall also consider some properties of positive linear maps of complex *-Banach algebras with an identity (namely, Banach *-algebras with an isometric involution and an identity of norm one)

Let A be a complex *-Banach algebra with an identity e_A . By ||x||, we denote the norm of $x \in A$. Moreover, we denote the well known pseud-norms on A as follows:

 $\|x\|_{1,A} = \sup\{|f(x)|; f \text{ is positive linear functional on } A \text{ such that } f(e_A) \leq 1\},\ \|x\|_{2,A} = \sup\{(f(x^*x))^{\frac{1}{2}}; f \text{ is positive linear functional on } A \text{ such that } f(e_A) \leq 1\}.$

Then we have $||x||_{1, A} \leq ||x||_{2, A} \leq ||x||$. If A is a C*-algebra, we have $||x||_{1, A} = ||x||_{2, A}$ A = ||x|| for every hermitian element x of A. Moreover $\{x \in A; ||x||_{1, A} = 0\}$ and $\{x \in A; ||x||_{2, A} = 0\}$ coincide with the *-radical $R^{(*)}_{A}$ of A. We recall that, if A has an identity, any positive linear map is self-adjoint (namely, $T(x^*) = (T(x_i))^*$). The notations given in [7] will be quoted without notice.

2. Operator norm of positive linear map

In [7], we discussed the continuity of positive linear maps of Banach *-algebras. In this section, we consider the operator norm of positive linear map of *-Banach algebras with an identity.

We need the following definition.

DEFINITION 2.1. Let A and B be a *-Banach algebra and a C*-algebra respectively, and T be a positive linear map of A into B. Then T is said to satisfy the stronger form of generalized Schwarz inequality provided $T(x^*)$ $T(x) \leq ||T|| T(x^*x)$ for every $x \in A$.

If T(x) is of the form $V^*\rho(x)V$ for every $x \in A$, where ρ is a *-representation of A on a complex Hilbert space K, and H is a complex Hilbert space on which B acts, and V is a