On 4-dimensional connected Einstein spaces satisfying the condition $R(X, Y) \cdot R = 0$

By

Kouei SEKIGAWA

(Received March 10, 1969)

1. Introduction

Let M be a 4-dimensional connected Einstein space with the Ricci tensor $S=\lambda g$, where g is the Riemannian metric of M and λ is a constant.

In this paper, we show the following theorem

THEOREM 1. 1 Let M be a 4-dimensional connected Einstein space. Assume that

(1.1)
$$R(X, Y) \cdot R = 0$$
 for all tangent vectors X and Y.

Then, $\nabla R = 0$, that is, M is locally symmetric.

Now, we can see that there is an orthonormal basis $\{e_1, e_2, e_3, e_4\}$ at each tangent space of M such that

$$R_{1212}=a,$$
 $R_{1313}=b,$ $R_{1414}=c,$ (1.2) $R_{2323}=c,$ $R_{2424}=b,$ $R_{3434}=a,$ $R_{1234}=f,$ $R_{1342}=h,$ $R_{1423}=-(f+h),$

otherwise zero. Where, $R_{ijkl} = g(R(e_i, e_j)e_k, e_l)$, $1 \le i, j, k, l, \le 4$. And, as M is an Einstein space with the Ricci curvature λ , the relation

(1.3)
$$a+b+c=-\lambda$$
, holds good.

As the endomorphism R(X, Y) operates on R as a derivation of the tensor algebra at each point of M, (1. 1) implies

$$[R(e_i, e_j), R(e_k, e_l)] = R(R(e_i, e_j)e_k, e_l) + R(e_k, R(e_i, e_j)e_l)$$

2. Proof of theorem

First we state a lemma