Almost contact hypersurfaces in almost Hermitian manifolds

By

Mitsugi NAGAO

(Received June, 1968)

1. Preliminaries

When, in a 2n-dimensional real differentiable manifold M^{2n} with local coordinates $\{x^{\lambda}\}$, there is given a mixed tensor field $F_{\mu^{\lambda}}$ satisfying $F_{\mu^{\nu}}F_{\nu^{\lambda}}=-\delta_{\mu^{\lambda}}$, we say that the manifold admits an almost complex structure $F_{\mu^{\lambda}}$ and we call such a manifold an almost complex manifold. Throughout the present paper the Greek indices take the values 1, 2,, 2n. If an almost complex manifold has a positive definite Riemannian metric tensor $G_{\mu\lambda}$ satisfying $F_{\mu^{\kappa}}F_{\lambda^{\nu}}G_{\kappa\nu}=G_{\mu\lambda}$, then the manifold is called an almost Hermitian manifold. In this case it is easily seen that $F_{\mu\lambda}=-F_{\lambda\mu}$, where $F_{\mu\lambda}=F_{\mu^{\nu}}G_{\nu\lambda}$.

Next, we shall give the definitions of various almost Hermitian manifolds [2]. If, in an almost Hermitian manifold, its structure tensor F_{μ^2} satisfies

$$(1.1) \qquad \nabla_{\mu}F_{\lambda}{}^{\mu}=0,$$

(1.2) $\nabla_{\beta}F_{\alpha\lambda} = -F_{\beta\nu}F_{\alpha\mu}\nabla_{\nu}F_{\mu\lambda}$ (i. e. $\nabla_{\nu}F_{\mu\lambda}$ is pure in ν and μ),

(1.3) $\nabla_{\nu}F_{\mu\lambda}+\nabla_{\mu}F_{\lambda\nu}+\nabla_{\lambda}F_{\nu\mu}=0,$

(1.4)
$$\nabla_{\nu}F_{\mu\lambda}+\nabla_{\mu}F_{\nu\lambda}=0,$$

then the manifold is called an almost semi-Kählerian manifold, an *O-manifold, an almost Kählerian manifold (an *H*-manifold) or an almost Tachibana manifold (a *K*-manifold) respectively.

If the Nijenhuis tensor $N_{\nu\mu}$ defined by

$$N_{\nu\mu}{}^{\lambda} = F_{\nu}{}^{\sigma}(\nabla_{\sigma}F_{\mu}{}^{\lambda} - \nabla_{\mu}F_{\sigma}{}^{\lambda}) - F_{\mu}{}^{\sigma}(\nabla_{\sigma}F_{\nu}{}^{\lambda} - \nabla_{\nu}F_{\sigma}{}^{\lambda})$$

vanishes identically, the almost Hermitian manifold, the almost semi-Kählerian manifold and the *O-manifold are called an Hermitian manifold, a semi-Kählerian manifold and a Kählerian manifold respectively [6]. A necessary and sufficient condition for an almost Hermitian manifold to be a Kählerian manifold is given by

$$(1.5) \qquad \nabla_{\nu} F_{\mu^{\lambda}} = 0.$$

And it is well-known that in an *O-manifold the two conditions $\nabla_{\mu}F_{\nu}^{\lambda}=0$ and