# A Note on a Linear Automorphism of $\boldsymbol{R}^{n}$ with the Pseudo-Orbit Tracing Property 

By<br>Seikichi Kakubari

(Received October 3, 1986)
(Revised November 26, 1986)

## 1. Introduction

A. Morimoto proved in [1] (Proposition 1) that for any linear automorphism $f$ of $\boldsymbol{R}^{n}$, $f$ is hyperbolic if and only if $f$ has the pseudo-orbit tracing property (P.O.T.P.). To show that if $f$ is not hyperbolic then $f$ does not have the P.O.T.P., for $\delta>0$ he constructed the $\delta$-pseudo orbit ( $\delta$-p.o.) for which there are no tracing points. But the sequence of points that he constructed is not $\delta$-p.o. for $\mathrm{n} \geq 2$.

To supply this gap, we show in this paper that if $f$ has the P.O.T.P. then $f$ is hyperbolic.

## 2. Definition and lemmas

Let $f: X \rightarrow X$ be a homeomorphism of a metric space $(X, d)$. We denote by $H(X)$ the group of all homeomorphisms of $X$.

Definition. A sequence of points $\left\{x_{n}\right\}_{n \in \boldsymbol{Z}}$ is called a $\delta$-pseudo-orbit ( $\delta$-p.o.) of $f$ if $d\left(f\left(x_{n}\right), x_{n+1}\right)<\delta$ for $n \in \boldsymbol{Z} . \quad\left\{x_{n}\right\}_{n \in \boldsymbol{Z}}$ is called to be $\varepsilon$-traced by $y \in X$ (with respect to $f$ ) if $d\left(f^{n}(y), x_{n}\right)<\varepsilon$ for $n \in \boldsymbol{Z}$. This $y$ is called an $\varepsilon$-tracing pornt.

We say that $f$ has the pseudo-orbit tracing property (P.O.T.P.) if for each $\varepsilon>0$ there exists $\delta>0$ such that any $\delta$-p.o. of $f$ can be $\varepsilon$-traced by some point $y \in X$.

We shall use the following lemmas given in [1] (or [2]).

Lemma 1. Let $h \in H(X)$ be a homeomorphism of $X$ such that $h$ and $h^{-1}$ are both uniformly continuous. Take $f \in H(X)$ and put $g=h \circ f \circ h^{-1}$. Then $f$ has the P.O.T.P. if and only if $g$ has the P.O.T.P.

Lemma 2. Let $(X, d)$ and $\left(X^{\prime}, d^{\prime}\right)$ be metric spaces, and let $f \in H(X)$ and $g \in H\left(X^{\prime}\right)$. The direct product $X \times X^{\prime}$ is a metric space by the distance function $d^{\prime \prime}\left(\left(x, x^{\prime}\right),\left(y, y^{\prime}\right)\right)$ $=\operatorname{Max}\left\{d(x, y), d^{\prime}\left(x^{\prime}, y^{\prime}\right)\right\}$ for $x, y \in X$ and $x^{\prime}, y^{\prime} \in X^{\prime} . \quad$ Put $(f \times g)\left(x, x^{\prime}\right)=\left(f(x), g\left(x^{\prime}\right)\right)$ for

