Fixed Points of Expanding Maps

By
Tetsuo Kaneko and Kazu-Hiro Sakai

(Received November 4, 1983)

1. Introduction

Let $\{f_i\}_{i=1}^{\infty}$ be a convergent sequence of maps from a space X into itself and let f_0 be a limit map. When does there exist a sequence of fixed points a_i of f_i such that $\{a_i\}_{i=1}^{\infty}$ converges to a_0 for each fixed point a_0 of f_0 . In [3] Rosen proved that it holds when X is a compact connected ANR and f_i is an open ϵ -locally expansive map for i=0, $1, 2, \ldots$, and $\{f_i\}_{i=1}^{\infty}$ converges uniformly to f_0 . In [2] Hu and Rosen recently showed that for a compact connected locally connected metric space, the ANR requirement can be dropped.

In this paper we show that in the hypothesis of the Theorem 4.8 in [2], if $\{f_i\}_{i=1}^{\infty}$ is a sequence of expanding maps with common ε and λ , the uniform convergence may be replaced by pointwise convergence and f_0 may be any map with a fixed point.

2. Definition and lemmas

Let (X, d) be a compact metric space. A continuous map $f: X \to X$ is called an ε -local expansion if there are $\varepsilon > 0$ and skewness $\lambda > 1$ such that $0 < d(x, y) < \varepsilon$ implies $d(f(x), f(y)) > \lambda d(x, y)$.

We call a continuous map f to be expanding if f is open and ε -local expansion for some $\varepsilon > 0$ and $\lambda > 1$.

Rosenholtz showed in [4] that if X is a compact connected metric space, such map f has a fixed point.

LEMMA 1. If X is a compact connected locally connected space with metric d and if $\{f_i\}_{i=1}^{\infty}$ is a sequence of expanding maps of X onto itself with common ε and λ , then there is $\delta_0 > 0$ ($\delta_0 < \varepsilon$) such that $x, y \in X$ with $d(f_i(x), y) < \delta_0$ implies $B_{\delta_0/\lambda}(x) \cap f_i^{-1}(y) \neq \phi$ for i=1, 2, 3, ..., where $B_{\alpha}(x) = \{y \in X : d(x, y) < \alpha\}$.

PROOF. According to Lemma 2 in [3], there is a finite open cover $\{W_{\beta}\}$ of X such that for each β and for $i=1, 2, 3, \ldots, W_{\beta}$ is connected and diam $W_{\beta} < \varepsilon$ and f_i maps every component of $f_i^{-1}(W_{\beta})$ homeomorphically onto W_{β} and furthermore evey component C of $f_i^{-1}(W_{\beta})$ has diameter $< \varepsilon$. Let $\delta_0 > 0$ ($\delta_0 < \varepsilon$) be a Lebesgue number for $\{W_{\beta}\}$. If x, $y \in X$ and $d(f_i(x), y) < \delta_0$, then there is some W_{β} containing $f_i(x)$ and y. Let C be the