Imbedding and immersion of projective spaces

By

Tsuyoshi WATABE

(Received December 15, 1964)

1. Introduction

Let M be a differentiable manifold, and f a differentiable map of M in a euclidean space R^m . We say f an immersion if the differential df has a maximal rank at each point of M and homeomorphic immersion an imbedding. We shall write $M \subset R^m$ or $M \subseteq R^m$ when there exists an imbedding of M in R^m or an immersion of M in R^m , respectively. Let Fb one of three basic fields R, C or Q and FP_n the n-dimensional projective space over F.

I. M. James has obtained an imbedding: $FP_n \subset \mathbb{R}^{2dn-d+1}$ for every integer $n \geq 1$, where d is the dimension of F over R. [7].

In this paper we shall prove the following

THEOREM 1. Let n be any integer which is not power of 2, then $FP_n \subset \mathbb{R}^{2dn-d}$.

This result overlaps with that of [6], [8] and [9].

For the case F=C or Q, we can also prove the following theorems which give us an information on the existence of imbedding of FP_n in lower dimensional euclidean space,

Theorem 2. $CP_n \subset \mathbb{R}^{4n-3}$ if $CP_n - x \subseteq \mathbb{R}^{4n-5}$ and $n \ge 5$.

Moreover if $CP_n - x \subseteq \mathbb{R}^{4n-5}$ and n is odd, then $CP_n \subset \mathbb{R}^{4n-4}$.

THEOREM 3. $QP_n \subset \mathbb{R}^{8n-k}$ if $QP_n - x \subseteq \mathbb{R}^{8n-k-1}$ and $k \leq n$, where k is 5, 6, or 8.

The authour wishes to express his thanks to Prof. K. Aoki, Mr. T. Hirose and Mr. T. Kobayashi for their many valuable suggestions and several discussions.

2. Imbeddings

Let $V=F^{n+1}$ be the right F-module and FP_n the associated right projective space. Thus we have a principal F^* -bundle π : $V-o\to FP_n$, where F^* is the multiplicative group of non zero elements of F, and the associated right line bundle (fibre F, group F^* operating on F on the left), which we denote by F. We may also consider the left line bundle F of dimension F of dimension F of dimension F over F. It is well known that the total space of this bundle is FP_{n+1} - FP_n , where FP_n is a point of FP_n . We denote this bundle by FP_n . The following lemma is well known.

(2. 1) Lemma. Let τ be the tangent bundle of FP_n . Then we have