Certain anti-holomorphic submanifolds of almost Hermitian manifolds*

By Noriaki Sato

1. Introduction

Let $(\widetilde{M}, J, \langle \rangle)$ (or briefly \widetilde{M}) be an almost Hermitian manifold with the almost Hermitian structure (J, \langle , \rangle) and M be a Riemannian submanifold of \widetilde{M} . If $JT_x(M)$ $=T_x(M)$ at each point x of M, $T_x(M)$ being the tangent space over M in \widetilde{M} , then M is called a holomorphic submanifold of \widetilde{M} . If $JT_x(M) \subset T_x^{\perp}(M)$ at each point x of M, $T_x^{\perp}(M)$ being the normal space over M in \widetilde{M} , then M is called a *totally real* submanifold of \widetilde{M} . If $JT_x^{\perp}(M) \subset T_x(M)$ for all point x of M, then M is called an *anti-holomorphic* (also known as a generic) submanifold of \widetilde{M} . If, in particular, $JT_x^{\perp}(M) = T_x(M)$, then an anti-holomorphic submanifold M is a totally real submanifold such that dim M = 1/2 dim M. In this case, M is called an anti-invariant submanifold of M. M is called a CR-submanifold of \widetilde{M} if there exists a C^{∞} -holomorphic distribution \mathfrak{D} (i.e., $J\mathfrak{D}=\mathfrak{D}$) on M such that its orthogonal complement \mathfrak{D}^{\perp} is totally real (i.e., $J\mathfrak{D}^{\perp} \subset T_r^{\perp}(M)$). Especially, if dim \mathfrak{D}_r^{\perp} =0 (resp. dim $\mathfrak{D}_x=0$) for any $x \in M$, a CR-submanifold M is a holomorphic (resp. totally real) submanifold of M. A proper CR-submanifold (resp. anti-holomorphic submanifold) of an almost Hermitian manifold is a CR-submanifold (resp. anti-holomorphic submanifold) with non-trivial holomorphic distribution and totally real distribution. If dim \mathfrak{D}^{\perp} =codim M (=dim M-dim M), a CR-submanifold is an anti-holomorphic submanifold of M. A CR-submanifold (or anti-holomorphic submanifold) of an almost Hermitian manifold is called a *CR-product* if it is locally the Riemannian product of a holomorphic submanifold and a totally real submanifold. We remark that every hypersurface of an almost Hermitian manifold is an anti-holomorphic submanifold. In this paper, we study the integrability conditions on anti-holomorphic submanifolds of nearly Kaehlerian manifolds (see [5]) and give some results with respect to CR-products of nearly Kaehlerian manifolds (see [4]). In particular, we study anti-holomorphic submanifolds in a 6-dimensional sphere S⁶ and obtain that if a proper anti-holomorphic submanifold is mixed-totally geodesic in S⁶ and the leaf of the totally real distribution is totally geodesic in S⁶, then the holomorphc distribution is not integrable (THEOREM 4.2).

^{*}Received July 1, 1981; revised Sept. 25, 1981.