On sequential estimators for jumps and reliability

By

Eiichi Isogai

(Received November 30, 1978)

1. Introduction and Summary

Let F(x) be a probability distribution function on the real line R. Assuming the singular part to be identically zero, it is well known that F(x) is uniquely decomposed into $F(x) = F_1(x) + F_2(x)$ where $F_1(x)$ is an absolutely continuous function and $F_2(x)$ is a pure step function with steps of magnitude, say, S_i at the points $x=x_i$, $i=\pm 1, \pm 2$, and that finally both $F_1(x)$ and $F_2(x)$ are non-decreasing. Let X_1, X_2, \cdots be independent, identically distributed random variables with the same distribution function F(x). As in MURTHY [3], we call R(x)=1-F(x) the reliability function. If x is any point of continuity of the distribution F(x) and if the density at x is denoted by f(x), Z(x)=f(x)/(1-F(x)) will be also refered to as the hazard rate.

We consider the problem of estimating the jump S_i corresponding to the saltus $x=x_i$ based on random samples X_1, X_2, \cdots . Also, considered are the problems of estimating of the reliability function R(x) and the hazard rate Z(x). This problem was considered by MURTHY [3]. He gave consistent classes of estimators in [3], while in this paper we shall give strong consistent classes of sequential estimators where that $\{Y_n\}$ is a strong consistent class of estimators of Y means that with probability one $Y_n \rightarrow Y$ as $n \rightarrow \infty$.

This paper consists of five sections. In section 2, auxiliary results will be given for proving results in section 3 and 4. In section 3 we shall give a strong consistent class of sequential estimators of the jump S_i . In section 4 strong consistent classes of sequential estimators of the reliability function will be given. Section 5 will give strong consistent classes of estimators for the hazard rate. In section 3 to 5, we assume that the singular part of the distribution F(x) is identically zero.

2. Auxiliary Results

Lemma 2. 1, 2. 2 and 2. 3 are due to WATANABE [4] and [5], while Lemma 2. 4 is due to BRAVERMAN and PYATNITSKII [1].

LEMMA 2.1. ([4]). Let $\{A_n\}$ be a sequence of non-negative numbers. Suppose that there exist three sequences of non-negative numbers $\{a_n\}$, $\{b_n\}$ and $\{L_n\}$, a positive constant