On the structure of p-class groups of certain number fields II

By

Teruo TAKEUCHI*

(Received November 2, 1977)

1. Introduction

Let p be a rational odd prime and let k be an algebraic number field of finite degree, whose class number h_k is prime to p. Let K/k be a cyclic extension of degree p, let \mathfrak{p}_1 ,, \mathfrak{p}_t be the prime ideals of k, ramified in K, and assume $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ are prime to p. If $\#(I(\mathfrak{p}_i)/H(\mathfrak{p}_i) = p$ for $i=1, \dots, t$, then we can study the p-class group M_K of K analogously to the case $k=\mathbf{Q}$, where $I(\mathfrak{p}_i)$ denotes the ideal group of k, prime to \mathfrak{p}_i , the ray mod \mathfrak{p}_i and $H(\mathfrak{p}_i)=I(\mathfrak{p}_i)^p P\mathfrak{p}_i$. From Lemma 1 it follows that if k does not contain the primitive p-th roots of unity, then there are infinitely many such \mathfrak{p}_i 's which satisfy some conditions each other.

In the present paper we treat the existence of cyclic extensions K/k's of degree p and t-tuples of prime ideals p_1, \dots, p_t , which have some properties. Unless otherwise stated the notation of [4] will be taken over. In particular \mathfrak{o} denotes the maximal order of the cyclotomic field of p-th roots of unity and \mathfrak{p} denotes the prime divisor of p in \mathfrak{o} . Let K/k be a cyclic extension of degree p, in which only $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ are ramified. Then for $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ the structue of p-class group M_K , in general, is not determined uniquely. In fact we can prove the following theorem.

THEOREM 1. Let k be an algebraic number field of finite degree such that $p \not X h_k$ and $k \oplus \xi_p$, where ξ_p denotes a primitive p-th root of unity. Then for any given natural number $t \ (\geq 3)$, there exist infinitely many t-tuples of prime ideals $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ of k, which satisfy the following conditions:

there are cyclic extensions K'/k and K''/k in which only $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ are ramified, such that rank $M_{K'}=t-1$ and rank $M_{K''}\geq 2t-3-u$, where u denotes the p-rank of unit group E_k of k.

Let $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ be prime ideals of k such that $\sharp(I(\mathfrak{p}_i)/H(\mathfrak{p}_i))=p$ for $i=1, \dots, t$, let K/k be a cyclic extension of degree p, in which only $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ are ramified and let L be the p-genus field (i.e. p-part of the genus field) with respect to K/k. In the case k=Q,

* Niigata University