A Spectral Characterization of a Class of C*-algebras

By

Tadashi Huruya*

(Received October 10, 1977)

1. Introduction

R. A. Hirschfeld and B. E. Johnson [2] studied those C*-algebras of which every selfadjoint element has a finite spectrum. T. Ogasawara and K. Yoshinaga [4] proved that a C*-algebra is dual if and only if every self-adjoint element has a spectrum without limit points other than zero. In this paper we present conditions on a C*-algebra under which every self-adjoint element has a countable spectrum.

2. Preliminaries

We state at first the definition of a dual C*-algebra.

A C*-algebra A is called dual if there is a Hilbert space H such that A is *-isomorphic to a C*-algebra of the C*-algebra of all compact operators on H.

A C*-algebra A is called liminal if for every irreducible representation π of A, $\pi(a)$ is compact for each $a \in A$.

If A is a C*-algebra, A^* denotes its conjugate space and A^{**} denotes its second conjugate space. Assuming A is in its universal representation, then the σ -weak closure of A can be identified with A^{**} .

If A and B are C*-algebras, $A \otimes_{\alpha} B$ denotes their spatial C*-tensor product, $A^{**} \otimes^{-} B^{**}$ denotes the W*-tensor product of A^{**} and B^{**} , and $A^{*} \otimes_{\alpha'} B^{*}$ denotes the norm closure of the algebraic tensor product of A^{*} and B^{*} in $(A \otimes_{\alpha} B)^{*}$.

If X is a compact Hausdorff space, C(X) denotes the C*-algebra of all continuous functions on X, and $C(X)^{*+}$ denotes the set of all positive linear functionals on C(X). By the Riesz representation theorem we can identify $C(X)^{*}$ with the space of all bounded complex regular Borel measures on X. We recall that a pure atomic functional ϕ on C(X)is of the form:

$$\phi = \sum_{i=1}^{\infty} \alpha_i \, \delta_{t_i} \, ,$$

where $\{\alpha_i\}$ is a sequence in the complex field with $\sum_{i=1}^{\infty} |\alpha_i| < \infty$, $\{t_i\}$ is a sequence in X, and ∂_t denotes the evaluation functional of a point $t \in X$.

* Niigata University