A note on SO(3)-action on CP_3

By

Akira IGAWA* and Tsuyoshi WATABE*

(Received November 10, 1976)

Introduction

Let SU(2) be the special unitary group of dimension 2 and SO(3) identified with AdSU(2), where $Ad: SU(2) \rightarrow O(3)$ is the adjoint representation. If an SU(2)-action on CP_3 (= the complex projective 3-space) has Ker Ad as its ineffective kernel, it induces an SO(3)-action on CP_3 . We shall call the action of SO(3) induced by a linear SU(2)-action on CP_3 linear action.

In this note we shall prove that possible orbit types of SO(3) actions on CP_3 are like those of linear actions. This note also contains a correction of an argument in the paper [6] ([6], p. 5) of one of the present authors.

We shall use the following notations.

S=the standard maximal torus of SU(2)

$$T = Ad S = \left\{ \begin{bmatrix} \cos t & \sin t & 0 \\ -\sin t & \cos t & 0 \\ 0 & 0 & 1 \end{bmatrix} t \in R \right\}; \text{ the maximal torus of } SO(3).$$

$$a = Ad \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix}, \quad b = Ad \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$

$$N = N(T) = T \cup aT, \text{ the normalizer of } T \text{ in } SO(3)$$

$$D_2 = \{e, a, b, ab\} = Z_2 + Z_2$$

$$\phi_r; \text{ the irreducible representation of } SU(2) \text{ of degree } r+1$$

 $[z_1, z_2, z_3, z_4]$; the homogeneous coordinate on CP_3 .

1. Linear actions on CP_3

1.1. The action induced by ϕ_3 .

Consider the action of SU(2) on CP_3 induced by ϕ_3 . Recall that $\phi_3: SU(2) \longrightarrow U(4)$ is given by

* Niigata University.