On the structure of p-class groups of certain number fields

By

Teruo TAKEUCHI*

(Received November 8, 1976)

1. Introduction

Let K/k be a cyclic extension of prime degree p over an algebraic number field k of finite degree, let M_K be the p-class group of K. The structure of M_K has been studied by many people especially by E. Inaba [5] and G. Gras [3]. In their works M_K is considered as a module over Gal(K/k), where Gal(K/k) is the Galois group of K/k.

In the present paper we shall show first (in 2) that the results on M_K is, when the class number h_k of k is relatively prime to odd prime p, obtained simply by considering M_K as a module over \mathbb{O} , where \mathbb{O} is the algebraic integer ring of the cyclotomic field of p-th roots of unity.

The second purpose of this paper is to study the relation between M_L and M_K using the results of 2 (in 3), where K/\mathbf{Q} is a cyclic extension of degree p such that only two primes are ramified in it, and where L/\mathbf{Q} is the genus field of K/\mathbf{Q} . Finally we shall show (in 4) by a similar method to that used in 3 that there exist infinitely many cyclic extensions K/\mathbf{Q} of degree p such that p-ranks of M_K are 2 and p-class field towers of Kare finite.

Throughout this paper we use the following notation.

Z: the ring of rational integers

Q: the rational number field

p: a rational odd prime

 $\xi_p = \xi$: a primitive *p*-th root of unity

 \mathfrak{O} : the algebraic integer ring of $\mathbf{Q}(\xi)$

p: the prime divisor of p in \mathbb{O}

For an algebraic number field *K* of finite degree,

 C_{K} : the ideal class group of K

 $h\kappa$: the class number of K

 $M\kappa$: the *p*-Sylow group of $C\kappa$

For an ideal \mathfrak{a} of K

 $cl(\mathfrak{a})$: the ideal class of \mathfrak{a}

* Niigata University.