A Banach algebra which is an ideal in the second conjugate space II

By

Seiji WATANABE

(Received May 20, 1975)

1. Introduction

Let A be a Banach algebra, A^{**} its second conjugate space. Then A^{**} becomes a Banach algebra under the Arens multiplications. For any Banach space X, let π be the cononical embedding of X into X^{**} . When does A^{**} contain $\pi(A)$ as an ideal? In [5] we investigated the condition under which $\pi(A)$ is an ideal in A^{**} . Here we shall consider the following problem.

- (1) When is $\pi(A)$ a two-sided ideal in A^{**} ?
- (2) When is $\pi(A)$ a block subalgebra in A^{**} ?

i.e.
$$\pi(A)A^{**}\pi(A) \subset \pi(A)$$
.

If $\pi(A)$ is an ideal in A^{**} , it is a block subalgebra of A^{**} .

A Banach algebra A is called *weakly compact* if every left and right multiplication operators on A are weakly compact.

In [5] we have shown that $\pi(A)$ is an ideal in A^{**} if and only if A is weakly compact. In §3 we shall investigate the special case, and obtain an improvement of a result in [5]. We shall use the notations and definitions given in [5] without notice.

2. General case

Let A be a Banach algebra. Denote by L_a (resp. R_a) the left (resp. right) multiplication operator on A.

Then we have

$$L_{a}^{*}(f) = f \circ a, \ R_{a}^{*}(f) = a * f, \ L_{a}^{**}(F) = \pi(a) \circ F$$

 $R_{a}^{**}(F) = F * \pi(a) \ (a \in A, f \in A^{*}, F \in A^{**})$

where T^* (resp. T^{**}) denote the conjugate (resp. second conjugate) operator of an operator T.

Hence we have the following two theorems from the well-known result on weakly compact operators [see 2].