Differentiable Circle Group Action on Homotopy Complex Projective 3–Spaces

By

Ryo WASHIYAMA

(Received May 20, 1975)

Introduction

Let M be an $H\mathbb{C}P^3$; in other wards M is a simply connected 6-manifold with the same homotopy type as the standard complex projective 3-spaces.

We will denote by T^1 the circle group, by (T^1, M) the action on M and by $F(T^1, M)$ the fixed point set of T^1 action on M. $X \sim P^h(n)$ means that the cohomology ring $H^*(X; R)$ is isomorphic to $R[a]/(a^{h+1})$, where n = deg a.

By a result in [1] (chap. VII, 5–1), it follows that there are following four cases.

(a)
$$F(T^1, M) \longrightarrow \mathbb{C}P^2 + \{point\}$$

(b)
$$F(T^1, M) \sim S^2 + S^2$$

(c)
$$F(T^1, M) \longrightarrow S^2 + \{point\} + \{point\}$$

(d)
$$F(T^1, M) \longrightarrow \{point\} + \{point\}$$

In this paper, we shall consider the cases (a) and (b). We have the following.

THEOREM 1. If $F(T^1, M) \sim_z \mathbb{C}P^2 + \{point\}$ or $F(T^1, M) \sim_z S^2 + S^2$, then M is diffeomorphic to $\mathbb{C}P^3$.

THEOREM 2. T^2 cannot act effectively on exotic complex projective 3-spaces. In the following all actions are asumed to be differentiable.

1. The main lemma

LEMMA 1–1. If M contains a submaniforld A such that $A \sim_{Q} \mathbb{C}P^2$, then M is diffeomorphic to $\mathbb{C}P^3$.

PROOF. Let $\nu = (E, p, A)$ be the normal bundle of A in M, and $((E, E^0), p, A, (\mathbb{D}^2, S^1))$ be pair of disk bundle and sphere bundle associated to ν .

It is known that