The immigration between branching processes

By
Tetsuo Kaneko

(Received October 31, 1974)

1. Introduction

Let $\left\{p_{k} ; k=0,1,2, \cdots\right\}$ and $\left\{q_{k} ; k=0,1,2, \cdots\right\}$ be probability functions; $p_{k} \geqq 0, \Sigma p_{k}=1$, $q_{k} \geqq 0, \Sigma q_{k}=1$. Let $\left\{X_{n} ; n=0,1,2, \cdots\right\}$ be a Galton Watson process based on $\left\{p_{k}\right\}$; i.e, a Markov chain with stationary transition probabilities given by

$$
\begin{aligned}
p_{i j} & =P\left(X_{n+1}=j \mid X_{n}=i\right) \\
& =\left\{\begin{array}{lll}
p_{j} * i & \text { if } & i \geqq 1, j \geqq 0, \\
\delta_{0} j & \text { if } & i=0, j \geqq 0,
\end{array}\right.
\end{aligned}
$$

where $\left\{p_{k}{ }^{* i}\right\}$ is the i -fold convolution of $\left\{p_{k}\right\}$ and $\delta_{0 j}$ is the Kronecker delta.
Similarly we define Galton Watson process $\left\{Y_{n} ; n=0,1,2, \cdots\right\}$ based on $\left\{q_{k}\right\}$.
This setting may be comprehended that after one unit of time each particle splits independently of others into a random number of offspring according to the probability law $\left\{p_{k}\right\}$ in A-district and according to the probabiltiy law $\left\{q_{k}\right\}$ in B-district.

In some report we see that the birth-rate in the city is smaller than the birth-rate in the country, and that many persons immigrate from the country into the city.

In this paper we consider a simplified type of immigration from B into A, and study the extinction probability and the limit behavior of the number of particles.

2. Immigration from B into \boldsymbol{A}

Now we assume that each particle in A-district and B-district splits as stated in 1 , and assume that when every particle in the n-th generation in A-district has no offspring then instantly a particle in the ($n+1$)-th generation in B-district (if exist) immigrate into A district. That is, let the number of particles in the n-th generation in A-district be \bar{X}_{n}, the number of their offsprings be \widetilde{X}_{n+1}, the number of particles in B-district be \bar{Y}_{n} and the number of their offsprings be \widetilde{Y}_{n+1}. Then

$$
\begin{array}{ll}
\bar{X}_{n+1}=1, \bar{Y}_{n+1}=\widetilde{Y}_{n+1}-1 & \text { if } \bar{X}_{n+1}=0, \widetilde{Y}_{n+1}>0, \\
\bar{X}_{n+1}=\widetilde{X}_{n+1}, \bar{Y}_{n+1}=\widetilde{Y}_{n+1} & \text { otherwise. }
\end{array}
$$

