A note on invariant measures for the Galton-Watson process with state-dependent immigration

By

Masamichi SATO

(Received October 31, 1974)

1. Introduction

Consider the Galton-Watson branching process with state-dependent immigration, where immigration is allowed in a generation iff the previous generation was empty (Pakes (1971) [3]).

Let $A(x) = \sum_{j=0}^{\infty} a_j x^j$ and $B(x) = \sum_{j=0}^{\infty} b_j x^j$ $(|x| \le 1)$ be the probability generating functions of the offspring and immigration distributions respectively. We shall assume that

1) $0 < a_0, a_0 + a_1, b_0 < 1$, and

$$2) \qquad \alpha = A'(1-) < \infty.$$

Denote the size of the *n*-th generation by X_n $(n=0, 1, \dots)$.

Now we discuss the problem of the existence and uniqueness of invariant measure of the Markov chain $\{X_n\}$, that is, a non-negative sequence $\{\mu_i\}$ $(i = 0, 1, \dots; \mu_i > 0$ for some *i*) such that

$$\mu_j = \sum \mu_i p_{ij} \qquad (j = 0, 1, \cdots),$$

where p_{ij} is the one-step transition probability from state *i* to *j*.

The following results are given by Pakes (1971) [3].

LEMMA A. Suppose an invariant measure, $\{\mu_i\}$, of the Markov chain $\{X_n\}$ exists. Then $U(x) = \sum_{i=0}^{\infty} \mu_i x^i$ converges for $x \in [0, q)$ and satisfies the functional equation

(1)
$$U[A(x)] = U(x) + \mu_0(1 - B(x)), \quad \mu_0 > 0$$

for $x \in [0, q)$, where q is the least positive solution of x = A(x), so that q = 1 if $\alpha \le 1$ and 0 < q < 1 if $\alpha > 1$.

THEOREM B. When $\alpha \leq 1$, the Markov chain, $\{X_n\}$, possesses a unique (up to a constant multiplier) invariant measure. And we obtain