A generalization of Malliavin's tauberian theorem

By

Michiaki WATANABE

(Received October 29, 1973)

1. Introduction

In this paper we generalize the theorem by P. Malliavin together with the formula of Å. Pleijel to deduce the behaviour of a positive measure μ defined on a sector of the complex plane:

$$\Gamma = \{\lambda : |\arg\lambda| \leq \theta\}, \ 0 \leq \theta < \pi/4$$

from the behaviour of a transform

$$f(z) = \int_{\Gamma} \frac{\mu(d\lambda)}{\lambda - z}, \quad z \in \Gamma.$$

P. Malliavin [1] proved the following

THEOREM A. Let $\sigma(\lambda)$ be a non-decreasing function for $\lambda \ge 0$. Suppose that

$$\int_0^\infty \frac{d\sigma(\lambda)}{\lambda - z} = a(-z)^{-\alpha} + O(|z|^{-\beta})$$

as $z \to \infty$ with $|\operatorname{Im} z| = |z|$ and $\operatorname{Re} z \ge 0$, where $0 < \alpha < \beta < 1$, $0 < \gamma < 1$, a > 0.

Then as $X \rightarrow \infty$

$$\sigma(X) = a \frac{\sin(1-\alpha)\pi}{(1-\alpha)\pi} X^{1-\alpha} + O(X^{r-\alpha}) + O(X^{1-\beta}).$$

Å. Pleijel [2] proved this theorem in a very elementary way. His proof uses the following approximate inversion formula for the Stieltjes transform of a positive measure:

THEOREM B. Let $\sigma(\lambda)$ be a non-decreasing function for $\lambda \geq 0$ and put

$$f(z) = \int_0^\infty \frac{d\sigma(\lambda)}{\lambda - z}, \quad z \in (0, \infty).$$

Then for X, Y > 0

$$\left|\sigma(X)-\sigma(0)-\frac{1}{2\pi i}\int_{L(Z)}f(z)dz+\frac{Y}{\pi}\operatorname{Re}f(Z)\right| \leq Y\operatorname{Im}f(Z),$$