On a sequential procedure with finite memory for testing statistical hypotheses

By

Kensuke TANAKA, Eiichi ISOGAI and Seiichi IWASE

(Received October 24, 1973)

1. Summary and Introduction

Many statistical procedure on testing hypotheses about the mean of a normal distribution with an unknown variance has been investigated by many people. In this paper we shall discuss the problem of the testing statistical hypotheses by using a sequential procedure with finite memory, so that the limiting probability of selecting the incorrect hypotheses is made zero. Now let a population have a normal distribution $N(\theta, \sigma^2)$, where θ and σ^2 are unknown to us. We denote the hypotheses: $\theta = \theta_i$ by H_i , i = 1, 2, ..., m. At the preceding experiment the hypothesis H_i is assumed to be acceptable, where "we accept the hypothesis H_i " is called "the hypothesis H_i is acceptable". Then a sample X_i is drawn from $N(\theta, \sigma^2)$ and we make $|X_i - \theta_i|$. Comparing $|X_i - \theta_i|$ with a preassigned positive number l, we decide which hypothesis is acceptable. If we reject the hypothesis *H_i*, we draw (m-1) mutually independent samples X_j from $N(\theta, \sigma^2)$ and make $|X_j - \theta_j|$, j=1, 2, ..., m, and $j \neq i$. By comparing them with l, we decide which hypothesis is acceptable. Next, we shall describe finite memory. There are now m specified memories T_i , i=1, 2, ..., m. According to the procedure described above, one of m memories is used. If memory T_i is used, we accept the hypothesis H_i . Hence at each experiment memory is changed.

Now we shall state a process of the experiments. The *n*th stage of the experiments consists of d_n experiments described above, where d_n tends to infinity as $n \to \infty$. When after d_n experiments memory T_i is used, it is said that the hypothesis H_i is acceptable at the *n*th stage. When after *r*th experiment at the *n*th stage memory T_i is used, it is said that the hypothesis H_i is acceptable at the *r*th experiment on the *n*th stage. Therefore, in this paper, we use only *m* memories in the procedure of testing statistical hypotheses. Let $\overline{P_i}(d_n)$ denote the probability that the hypothesis H_i is acceptable and $P_i(n)$ denote the stationary probability that the hypothesis H_i is acceptable on the *n*th stage by using a specified Markov chain M(n). When the hypothesis H_1 is true, according to the sequential procedure specified in next section, it can be shown that $\sum_{n=1}^{\infty} \overline{P_1}(d_n) = \infty$ and $\sum_{n=1}^{\infty} n^{-1}$