The second dual of a tensor product of C^{*} -algebras, II

By

Tadashi HURUYA

(Received September 26, 1973)

1. Introductinn

Let C be a C^* -algebra, and let π_{C} be the universal represensation of C in the universal representation Hilbert space H_{C} . The second dual C^{**} of C may be identified with the closure of $\pi_{C}(C)$ in weak operator topology [1: p. 236]. For C*-algebras A and B we denote by $A\otimes B$ the C^{*}-tensor product of A and B , $A^{**}\otimes B^{**}$ the W^{*}-tensor product of A^{**} and B^{**} . Since there exists the canonical *-isomorphism $\pi_{A}\otimes\pi_{B}$ from $A\otimes B$ into $A^{**}\otimes_{B}B^{**}$, $A\otimes_{B}B$ may be identified with the weak dense subalgebra $\pi_{A}\otimes_{\pi_{B}}(A\otimes_{B}B)$ of $A^{**}\otimes B^{**}.$ In this paper we shall study positive linear functionals of $A\otimes B$ which has the normal extension to $A^{**}\otimes B^{**}.$

In §2, we shall show a characterization of pure states having the normal extension to $A^{**}\otimes B^{**}.$

In §3, we shall show that $(A\otimes B)^{**}$ is *-isomorphic to $A^{**}\otimes B^{**}$ when either A or B is a dual C*-algebra, and the *-isomorphism $\pi_{A}\otimes\pi_{B}$ has no normal extension to $(A\otimes B)^{**}$ when A and B are UHF algebras [2: Definition 1. 1].

2. Theorem

THEOREM. Let A and B be C^* -algebras and π be an irreducible representation of $A\otimes_{B}B$ on a Hilbert space H π . Then the following two assertions are equivalent.

(a) π is equivalent with a representation $\pi_{1}\otimes\pi_{2}$ where π_{1} and π_{2} are representations of A and B , respectively.

(b) A positive linear functional f of $A\otimes_{B}B$ has the normal extension to $A^{**}\otimes B^{**}$, where f is given by the formula

 $f(x) = (\pi(x)\xi, \xi), \ x \in A\otimes B, \ \xi \in H_{\pi}.$

PROOF. It is obvious that (a) implies (b). If (b) holds, f can be expressed such that

 $f(x) = (x\xi, \xi), \ \ x \in A\otimes B, \ \ \xi \in H_{A}\otimes H_{B}.$