The second dual of a tensor product of C^* -algebras, II

By

Tadashi HURUYA

(Received September 26, 1973)

1. Introductinn

Let C be a C*-algebra, and let π_C be the universal represensation of C in the universal representation Hilbert space H_C . The second dual C** of C may be identified with the closure of $\pi_C(C)$ in weak operator topology [1: p. 236]. For C*-algebras A and B we denote by $A \otimes B$ the C*-tensor product of A and B, $A^{**} \otimes B^{**}$ the W*-tensor product of A^{**} and B^{**} . Since there exists the canonical *-isomorphism $\pi_A \otimes \pi_B$ from $A \otimes B$ into $A^{**} \otimes B^{**}$, $A \otimes B$ may be identified with the weak dense subalgebra $\pi_A \otimes \pi_B (A \otimes B)$ of $A^{**} \otimes B^{**}$. In this paper we shall study positive linear functionals of $A \otimes B$ which has the normal extension to $A^{**} \otimes B^{**}$.

In §2, we shall show a characterization of pure states having the normal extension to $A^{**} \otimes B^{**}$.

In §3, we shall show that $(A \bigotimes B)^{**}$ is *-isomorphic to $A^{**} \otimes B^{**}$ when either A or B is a dual C*-algebra, and the *-isomorphism $\pi_A \otimes \pi_B$ has no normal extension to $(A \bigotimes B)^{**}$ when A and B are UHF algebras [2: Definition 1.1].

2. Theorem

THEOREM. Let A and B be C*-algebras and π be an irreducible representation of $A \bigotimes_{\alpha} B$ on a Hilbert space $H\pi$. Then the following two assertions are equivalent.

(a) π is equivalent with a representation $\pi_1 \otimes \pi_2$ where π_1 and π_2 are representations of A and B, respectively.

(b) A positive linear functional f of $A \bigotimes_{\alpha} B$ has the normal extension to $A^{**} \otimes B^{**}$, where f is given by the formula

 $f(x) = (\pi(x)\xi, \xi), x \in A \bigotimes B, \xi \in H_{\pi}.$

PROOF. It is obvious that (a) implies (b). If (b) holds, f can be expressed such that

 $f(\mathbf{x}) = (\mathbf{x}\boldsymbol{\xi}, \boldsymbol{\xi}), \ \mathbf{x} \in A \otimes B, \ \boldsymbol{\xi} \in H_A \otimes H_B.$