On analytic tensors in certain Hermitian manifolds

By

Sumio SAWAKI

(Received December 20, 1959)

§1. Introduction

Let X_{2n} be a complex analytic manifold of n complex dimension (topological dim. 2n) endowed with a Hermitian metric

$$(1.1) ds^2 = g_{jk}dz^jdz^k (j, k=1, 2, \dots, n, \overline{1}, \overline{2}, \dots, n)$$

where $g_{jk}(z, \bar{z})$ is a positive definite symmetric tensor satisfying

$$(1.2) g_{\alpha\beta} = g_{\bar{\alpha}\bar{\beta}} = 0, g_{\alpha\bar{\beta}} = \overline{g_{\bar{\alpha}\beta}} (\alpha, \beta = 1, 2, \dots, n).$$

Hence, by virtue of (1.2), the metric form (1.1) can be written in the following

$$ds^2 = 2g_{\alpha\bar{\beta}}dz^{\alpha}dz^{\bar{\beta}}$$
 [1].

Throughout this paper we shall assume that the Latin indices take the values 1, 2, \cdots , n, $\overline{1}$, $\overline{2}$, \cdots , \overline{n} and the Greek indices run over the range 1, 2, \cdots , n.

The metric connection will be denoted by E_{jk} and covariant differentiation with respect to this connection by ∇ , so that

$$\nabla_{l}g_{jk} = \partial_{l}g_{jk} - g_{sk}E_{lj}s - g_{js}E_{lk}s = 0.$$

It is assumed that this connection E_{jk}^i is so called unitary connection, that is, those components of E_{jk}^i of different parity vanish and then the torsion

$$S_{jk}^{i} = \frac{1}{2} \left(E_{jk}^{i} - E_{kj}^{i} \right)$$

has only the following non-vanishing components:

$$S_{eta\gamma}^{\alpha} = \frac{1}{2} (E_{eta\gamma}^{\alpha} - E_{\gamma\beta}^{\alpha}), \ S_{ar{eta}ar{\gamma}}^{ar{lpha}} = \frac{1}{2} (E_{ar{eta}ar{\gamma}}^{ar{lpha}} - E_{ar{ar{\gamma}}ar{eta}}^{ar{lpha}}).$$

From (1.4), we have

$$(1.5) E_{\beta\gamma}{}^{\alpha} = g^{\alpha\bar{\delta}} \frac{\partial g_{\bar{\delta}\beta}}{\partial z^{\gamma}}, \quad E_{\bar{\beta}\bar{\gamma}}{}^{\bar{\alpha}} = g^{\bar{\alpha}\delta} \frac{\partial g_{\bar{\delta}\bar{\beta}}}{\partial z^{\bar{\gamma}}},$$

so that

$$(1.6) S_{\beta\gamma}{}^{\alpha} = \frac{1}{2} g^{\alpha\bar{\delta}} \left(\frac{\partial_{\bar{\delta}\beta}}{\partial z^{\bar{\gamma}}} - \frac{\partial g_{\bar{\delta}\gamma}}{\partial z^{\bar{\beta}}} \right), S_{\bar{\beta}\bar{\gamma}}{}^{\bar{\alpha}} = \frac{1}{2} g^{\bar{\alpha}\delta} \left(\frac{\partial g_{\delta\bar{\beta}}}{\partial z^{\bar{\gamma}}} - \frac{\partial g_{\delta\bar{\gamma}}}{\partial z^{\bar{\beta}}} \right).$$