The epuivalence of two definitions of homotopy sets for Kan complexes

By

Eiitirô HONMA and Tetuo KANEKO

(Received December 20, 1959)

As we remarked in \$ 1 and 2 of [1], the following proposition holds. The purpose of this paper is to give its proof. Free use will be made of the definitions and notations of [1].

PROPOSITION 1. 1°. If (K, L) is a Kan pair with base point $\varphi \in L_0$, DEFINITIONS 1.7 and 1.10 in [1] of $\pi_n(K, L, \varphi)$ are equivalent for $n \ge 0$. 2°. If (K; L, M) is a Kan triad with base point $\varphi \in (L \cap M)_0$, DEFINITIONS 2.4 and 2.7 in [1] of $\pi_n(K; L, M, \varphi)$ are equivalent for $n \ge 2$. I.e. the natural embedding map $i_k: K \rightarrow S|K|$ given in [7] induces one-to-one onto maps $(i_k)_*: \pi_n(K, L, \varphi) \rightarrow \pi_n(S|K|, S|L|, i_k(\varphi))$ and $(i_k)_*: \pi_n(K; L, M, \varphi) \rightarrow \pi_n(S|K|; S|L|, S|M|, i_k(\varphi))$ where π_n means the set defined by DEFINITIONS 1.7 and 2.4 in [1].

Proof of 1°. The equivalence follows from THEOREM 7.3 in [1], REMARK 1 in [3, §4] and the five lemma for $n \ge 2$, and by their definitions for n=0.

To show that $(i_k)_*$ is one-to-one onto for n=1, consider $\pi_1(K, L, \varphi)$ and $\pi_1(S|K|, S|L|, i_k(\varphi))$. In this case we may assume that K is connected, i.e. $\pi_0(K, \varphi)=0$. Then we can construct the c.s.s. group $G(K;\varphi)$ which is a loop complex of K rel. φ [2, THEOREM 9.2]. Put $U=G(K;\varphi)\times_t K$, $C=G(K;\varphi)\times_t L$ and $\psi=(e_0,\varphi)\in U_0$ where t is a twisting function defined by $t\sigma=\overline{\sigma}$, e_0 is the identity element of the group $G(K;\varphi)_0$. By LEMMA 9.3 in [2] U is contractible. Let $p:U\rightarrow K$ be given by $p(\rho, \sigma)$ $=\sigma$ for $(\rho, \sigma)\in U$. Then p is a fibre map: $(U, C, \psi)\rightarrow (K, L, \varphi)$ and (U, C) is a Kan pair. By THEOREM 8.3-2) and PROPOSITION 8.2 in [1], $p_*:\pi_1(U, C, \psi)\rightarrow\pi_1(K, L, \varphi)$ and $(S|P|)_*:\pi_1(S|U|, S|C|, i_U(\psi))\rightarrow\pi_1(S|K|, S|L|, i_k(\varphi))$ are one-to-one onto.

Consider the following commutative diagram:

where δ and δ' are the boundary operations induced by the 0-th face operation, $(i_C)_*$ is one-to-one onto [3, §4 REMARK 1]. Therefore to show that $(i_k)_*$ is one-to-one