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Our main purpose is to give the definitions of the homotopy groups of a c.s.s.
pair (or triad) and of homotopy between maps of one of c.s.s. pair (or triad) into
another after the combinatorial manner as [5] [6]. And we study the fundamental
properties of these notions, for example, those properties mentioned by S. T. Hu [2]
as the axioms of homotopy theory of topological space, or the exactness of the lower
and upper homotopy sequences of c.s.s. triad. All of these properties ‘may be
‘verified combinatorially. "

§1. The homotopy gruops of c.s.s. pairs.

In this note, K,, means the collection of all n-simplices of c.s.s. complex K, get
and o7’ mean the i-th face and the i-th degeneracy of simplex o.
DerFINITION 1.1. For ¢;=K,, symbol
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is called an equation in K, and means that aiej;lzvjsi, 0<=i<j=n-+l, i, 3= (match
 condition). If there exists =Ky, such that cei=0i, 0<i<n+1, i3], 0 and oc! are
ealled-solvent and- solution of this equation respectively.
If each equation in K has at least one solvent, K is called a-Kan complex. (‘This is
a complex: which satisfies the extension condition [3] [4]).
D. M. ‘Kan [5] gave* the following definition:
DEFINITION 1.2. Two simplices ¢ and ¢ of K., (#=0) is called homotopic (notation
6~7 Or p:o~r) if
(a) their faces coincide, i.e. gei=rze? for all i
(b) there exists pEKuyq1 such that pen=o, pertl=1c and pei =gciyn~1 = reipn~l,
0<i<n—1. '
We have
- PROPOSITION 1.3. - Let K-be a'Kan complex. Two-n-simplices ¢ and v of K are homo-
topic if and only if
(a) oci=rei forall i



