A remark on transformation group with four orbit types

By

Tsuyoshi WATABE

(Received April 1, 1972)

Introduction

The object of this note is to prove the following

THEOREM. Let G be a compact connected Lie group, locally isomorphic to $T^r \times G_1 \times G_2 \times \ldots \times G_s$. where T^r is r-dimensional torus and each G_i is a simple compact connected Lie group of rank ≥ 5 . Then the fixed point set of any effective differentiable action of G on a euclidean space R^m with four orbit types is non-empty.

The fixed point set of differentiable action of compact connected Lie group on euclidean spaces with two or three orbit types have been proved to be non-empty by Borel ([1]) and HSIANG, W. C. ([2]). Our result is a direct consequence of the works of HSIANG, W. C. and HSIANG, W. Y. ([3], [4]).

The author wishes to express his thanks to Mr. K. Abe for his kind discussions and valuable suggestions.

1. Statement of results

Let G be a compact connected Lie group and f an effective differentiable action of G on R^m , i.e. $f: G \times R^m \longrightarrow R^m$ is a differentiable mapping satisfying (1) f(e, x) = x for every $x \in R^m$ (2) $f(g_1, f(g_2, x)) = f(g_1g_2, x)$ for $g_i \in G$, $x \in R^m$ and (3) if f(g, x) = x for every $x \in R^m$, then g = e. We write f(g, x) = gx.

In the first place, we consider the case where G is locally isomorphic to a product $G_1 \times G_2$ of two simple compact connected Lie groups G_i of rank ≥ 5 . Assume the number of orbit types of f is four. Then $G_1 \times G_2$ acts almost effectively on R^m with four orbit types. The set of all orbit types of a differenentiable action is an ordered set (i.e. $(G_x) \leq (G_y)$ if every element of (G_x) is contained in some element of (G_y)). Hence we can define a graph for a differentiable action with finite orbit types as follows; points of the graph are orbit types and points a and b are jointed by a segment from a to b when a < b and there is no point c such that a < c < b.

Then possible graphs of action with four orbit types are;