On the immersibility of almost parallelizable manifolds

By

T. WATABE and T. HIROSE

(Received, December 15, 1963)

Introduction

M. W. Hirsch has shown that an almost parallelizable *n*-manifold is immersible in Euclidean (n+k) - space R^{n+k} if n < 2k [1]. He has proved the result by making use of a result due to M. Kervaire that the Smale invariant of an immersion of *n*sphere in R^{n+k} vanishes if $n \le 2k-2$ [4]. In this paper we shall prove the following; **Proposition 1**;

An almost parallelizable n-manifold is immersible in \mathbb{R}^{n+1} if $n \equiv 0 \pmod{4}$. **Proposition 2**;

If $n\equiv 0 \pmod{4}$, an almost parallelizable n – manifold is in general not immersible in \mathbb{R}^{n+1} . In particular, the Hirsch's result is best possible for n=4.

The authors wish to express their thanks to Prof. K. Aoki and Prof. T. Kaneko for their many valuable suggestions and several discussions.

§ 1. Definitions and Lemmas

In the following discussion, all manifolds are considered as connected, orientable, C^{∞} manifolds. By *immersion* $f: M^n \to R^p$ we mean a C^{∞} map whose Jacobian matrix has rank n=dim M^n at each point. A homeomorphic immersion will be called *imbedding*. A manifold M^n will be called *parallelizable* if its tangent bundle is trivial, we say M^n is almost parallelizable if $M^n - x$ is parallelizable for some $x \in M^n$. M^n will be called π -manifold if M^n is imbedded in R^{n+k} $(k \ge n)$ with trivial normal bundle ν^k .

Since a non-closed (i.e. non-compact or with boundary) almost parallelizable manifold is parallelizable, hence it is immersible in R^{n+1} . (Theorem 6.3 of [2]). Therefore we may consider only closed manifolds. First we consider the condition for that an orientable *n*-manifold is immersible in R^{n+1} .

Lemma 1;

Let M^n be an orientable manifold. Then it is necessary and sufficient for M^n to be immersible in R^{n+1} is that it is a π -manifold.