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SPECTRAL ASYMPTOTICS AND QUASICLASSICAL ANALYSIS OF

SCHRÖDINGER TYPE OPERATORS∗
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Abstract. In this work we consider a general class of Schrödinger type operators, associated to
multi-quasi-elliptic symbols introduced by Buzano and Ziggioto in [9]. We develop their quasiclassical
analysis and we obtain a uniform asymptotic formula for their counting function Nǫ(τ), in the sense
that it holds as τ → +∞ and for all 0 < ǫ ≤ 1.
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1. Introduction. Quasiclassical analysis and spectral asymptotics are strictly
related to each other (this is particularly evident when dealing with homogeneous
symbols, see [6],Remark A.2.2). In both of them, the object of study is the counting
function (which we denote by N (τ) in the case of spectral asymptotics and by Nǫ(τ)
in the case of quasiclassical analysis) associated to the operators we are dealing with.

In spectral asymptotics we analyze the behavior of N (τ) as τ → +∞, while in
quasiclassical analysis we study the behavior of Nǫ(τ) as ǫ→ 0, where ǫ plays the role
of the Planck constant in Quantum Mechanics.(1)

In this paper we take into consideration multi-quasi-elliptic operators of
Schrödinger type hw , introduced by Buzano and Ziggioto in [9]. We already ob-
tained an asymptotic formula for their counting function N (τ) as τ → +∞ and in
particular we proved an estimate of the remainder term, showing that it always goes
to 0 as τ → +∞.

Now we consider quasiclassical operators associated to hw and their counting
function Nǫ(τ). Using the so called Tauberian condition (see condition 2. of Theorem
1 in Section 3), we manage to obtain a uniform asymptotic formula for Nǫ(τ), in the
sense that it is valid as τ → +∞ and for all 0 < ǫ ≤ 1.

We can make a comparison with the results obtained in one of our previous pa-
pers, see [8]. In that case we treated quasiclassical analysis of more general operators
(hypoelliptic operators), but we didn’t manage to obtain a uniform asymptotic for-
mula, holding as τ → +∞ and for all 0 < ǫ ≤ 1. Moreover, in our uniform asymptotic
formula obtained for multi-quasi-elliptic operators (see (10)) we don’t need to exclude
the critical values of the symbol h(x, ξ) (i.e. the values τ for which gradh(x, ξ) = 0
on the surface {(x, ξ) : h(x, ξ) = τ}).

We employ the following notation: given two functions f, g : X → R, and a subset
A ⊂ X , we write

f(x) ≺ g(x), ∀x ∈ A,

if there exists a constant C such that

f(x) ≤ Cg(x), ∀x ∈ A.
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(1)In order to be consistent with the notations used in [10] here we denote the Planck constant by

ǫ and not by h, since we use h to denote our operators.
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