
METHODS AND APPLICATIONS OF ANALYSIS. c© 2009 International Press
Vol. 16, No. 3, pp. 389–402, September 2009 007

CONVERGENCE RATE TO THE NONLINEAR WAVES FOR

VISCOUS CONSERVATION LAWS ON THE HALF LINE∗

ITSUKO HASHIMOTO† , YOSHIHIRO UEDA‡ , AND SHUICHI KAWASHIMA§

Abstract. We study the convergence rate of solutions to the initial-boundary value problem
for scalar viscous conservation laws on the half line. Especially, we deal with the case where the
Riemann problem for the corresponding hyperbolic equation admits transonic rarefaction waves. In
this case, it is known that the solution tends toward a linear superposition of the stationary solution

and the rarefaction wave. We show that the convergence rate is (1 + t)
− 1

2
(1− 1

p
)
log2(2 + t) in Lp

norm (1 ≤ p < ∞) and (1 + t)−
1
2
+ǫ in L∞ norm if the initial perturbation from the corresponding

superposition is located in H1 ∩ L1. The proof is given by a combination of the weighted Lp energy
method and the L1 estimate.
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1. Introduction. We consider the following scalar viscous conservation laws on
the half line:



















ut + f(u)x = uxx, x > 0, t > 0,

u(0, t) = u−, t > 0,

lim
x→∞

u(x, t) = u+, t > 0,

u(x, 0) = u0(x), x > 0,

(1.1)

where the flux f = f(u) is a given smooth function of u satisfying f(0) = f ′(0) = 0
and u± are given constants. In this problem, we assume that the initial function
u0(x) satisfies u0(0) = u− and limx→∞ u0(x) = u+ as the compatibility conditions.
Throughout this paper, we impose the following condition on the flux f(u): Either

f ′′(u) > 0 for u ∈ R, (1.2)

or

f ′′(0) > 0, f(u) > 0 for u ∈ [u−, 0). (1.3)

The main purpose of the present paper is to obtain the convergence rate under the
boundary condition u− < 0 < u+ and the flux condition (1.2) or (1.3).

It is known that the asymptotic behavior of solutions to (1.1) is closely related to
the solution of the Riemann problem for the corresponding hyperbolic equation (c.f.
[5], [6]):











ut + f(u)x = 0, x ∈ R, t > −1,

u(x,−1) =

{

u−, x < 0,
u+, x > 0.

(1.4)
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