UNIFORM STABILIZATION OF THE WAVE EQUATION ON COMPACT SURFACES AND LOCALLY DISTRIBUTED DAMPING*

M. M. CAVALCANTI[†], V. N. DOMINGOS CAVALCANTI[‡], R. FUKUOKA[§], and J. A. SORIANO[¶]

Abstract. This paper is concerned with the study of the wave equation on compact surfaces and locally distributed damping, described by

 $u_{tt} - \Delta_{\mathcal{M}} u + a(x) g(u_t) = 0 \quad \text{on } \mathcal{M} \times]0, \infty[,$

where $\mathcal{M} \subset \mathbb{R}^3$ is a smooth (of class C^3) oriented embedded compact surface without boundary, such that $\mathcal{M} = \mathcal{M}_0 \cup \mathcal{M}_1$, where

$$\mathcal{M}_1 := \{x \in \mathcal{M}; m(x) \cdot \nu(x) > 0\}$$
, AND $\mathcal{M}_0 = \mathcal{M} \setminus \mathcal{M}_1$.

Here, $m(x) := x - x^0$, $(x^0 \in \mathbb{R}^3 \text{ fixed})$ and ν is the exterior unit normal vector field of \mathcal{M} .

For $i = 1, \ldots, k$, assume that there exist open subsets $\mathcal{M}_{0i} \subset \mathcal{M}_0$ of \mathcal{M} with smooth boundary $\partial \mathcal{M}_{0i}$ such that \mathcal{M}_{0i} are umbilical, or more generally, that the principal curvatures k_1 and k_2 satisfy $|k_1(x) - k_2(x)| < \varepsilon_i$ (ε_i considered small enough) for all $x \in \mathcal{M}_{0i}$. Moreover suppose that the mean curvature H of each \mathcal{M}_{0i} is non-positive (i.e. $H \leq 0$ on \mathcal{M}_{0i} for every $i = 1, \ldots, k$). If $a(x) \geq a_0 > 0$ on an open subset $\mathcal{M} * \subset \mathcal{M}$ that contains $\mathcal{M} \setminus \bigcup_{i=1}^k \mathcal{M}_{0i}$ and if g is a monotonic increasing function such that $k|s| \leq |g(s)| \leq K|s|$ for all $|s| \geq 1$, then uniform decay rates of the energy hold.

Key words. Wave equation, localized damping, surfaces in R3, umbilical surfaces.

AMS subject classifications. 35L05, 35L15, 53A05, 53A10

1. Introduction. Let \mathcal{M} be a smooth (of class C^3) oriented embedded compact surface without boundary in \mathbb{R}^3 with $\mathcal{M} = \mathcal{M}_0 \cup \mathcal{M}_1$, where

$$\mathcal{M}_1 := \{x \in \mathcal{M}; m(x) \cdot \nu(x) > 0\}$$
, and $\mathcal{M}_0 = \mathcal{M} \setminus \mathcal{M}_1$. (1.1)

Here, $m(x) := x - x^0$, $(x^0 \in \mathbb{R}^3 \text{ fixed})$ and ν is the exterior unit normal vector field of \mathcal{M} .

We denote by ∇_T the tangential-gradient on \mathcal{M} , by $\Delta_{\mathcal{M}}$ the Laplace-Beltrami operator on \mathcal{M} . This paper is devoted to the study of the uniform stabilization of solutions of the following damped problem

$$\begin{cases} u_{tt} - \Delta_{\mathcal{M}} u + a(x) g(u_t) = 0 & \text{on } \mathcal{M} \times]0, \infty[, \\ u(x, 0) = u^0(x), \quad u_t(x, 0) = u^1(x) & x \in \mathcal{M}, \end{cases}$$
(1.2)

where $a(x) \ge a_0 > 0$ on an open proper subset \mathcal{M}_* of \mathcal{M} and in addition g is a monotonic increasing function such that $k|s| \le |g(s)| \le K|s|$ for all $|s| \ge 1$.

Stability for the wave equation

$$u_{tt} - \Delta u + f(u) + a(x) g(u_t) = 0 \text{ in } \Omega \times \mathbb{R}_+, \qquad (1.3)$$

^{*}Received July 14, 2008; accepted for publication July 16, 2008.

[†]Department of Mathematics, State University of Maringá, 87020-900, Maringá, PR, Brazil (mm cavalcanti@uem.br). Partially supported by the CNPq Grant 300631/2003-0.

[‡]Department of Mathematics, State University of Maringá, 87020-900, Maringá, PR, Brazil (vnd cavalcanti@uem.br). Partially supported by the CNPq Grant 304895/2003-2.

 $^{^{\$}}$ Department of Mathematics, State University of Maringá, 87020-900, Maringá, PR, Brazil (rfukuoka@uem.br).

[¶]Department of Mathematics, State University of Maringá, 87020-900, Maringá, PR, Brazil (jas palomino@uem.br). Partially supported by the CNPq Grant 301352/2003-8.