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ESTIMATES FOR THE QUENCHING TIME OF A PARABOLIC

EQUATION MODELING ELECTROSTATIC MEMS∗

NASSIF GHOUSSOUB† AND YUJIN GUO‡

Abstract. The singular parabolic problem ut = ∆u −

λf(x)

(1+u)2
on a bounded domain Ω of

R
N with Dirichlet boundary conditions, models the dynamic deflection of an elastic membrane in a

simple electrostatic Micro-Electromechanical System (MEMS) device. In this paper, we analyze and
estimate the quenching time of the elastic membrane in terms of the applied voltage —represented
here by λ. As a byproduct, we prove that for sufficiently large λ, finite-time quenching must occur
near the maximum point of the varying dielectric permittivity profile f(x).
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1. Introduction. Micro-Electromechanical Systems (MEMS) are often used to
combine electronics with micro-size mechanical devices in the design of various types
of microscopic machinery. An overview of the physical phenomena of the mathemati-
cal models associated with the rapidly developing field of MEMS technology is given in
[13]. The key component of many modern MEMS is the simple idealized electrostatic
device shown in Figure 1. The upper part of this device consists of a thin and de-
formable elastic membrane that is held fixed along its boundary and which lies above
a rigid grounded plate. This elastic membrane is modeled as a dielectric with a small
but finite thickness. The upper surface of the membrane is coated with a negligibly
thin metallic conducting film. When a voltage V is applied to the conducting film, the
thin dielectric membrane deflects towards the bottom plate, and when V is increased
beyond a certain critical value V ∗ –known as pull-in voltage– the steady-state of the
elastic membrane is lost, and proceeds to quenching, i.e. snap through, at a finite
time creating the so-called pull-in instability.
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Fig. 1. The simple electrostatic MEMS device.
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