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REGULARITY OF THE EXTREMAL SOLUTION IN A MEMS

MODEL WITH ADVECTION∗

CRAIG COWAN† AND NASSIF GHOUSSOUB‡

Abstract. We consider the regularity of the extremal solution of the nonlinear eigenvalue
problem

(S)λ

(
−∆u + c(x) · ∇u = λ

(1−u)2
in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in R
N and c(x) is a smooth bounded vector field on Ω̄. We

show that, just like in the advection-free model (c ≡ 0), all semi-stable solutions are smooth if
(and only if) the dimension N ≤ 7. The novelty here comes from the lack of a suitable variational
characterization for the semi-stability assumption. We overcome this difficulty by using a general
version of Hardy’s inequality. The same method applies for the Gelfand problem (i.e., exponential
nonlinearity).
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1. Introduction. The following equation has often been used to model a simple
Micro-Electro-Mechanical System (MEMS) device:

(P )λ

{ −∆u = λ
(1−u)2 in Ω,

u = 0 on ∂Ω,

where Ω is a smooth bounded domain in R
N , λ > 0 is proportional to the applied

voltage and 0 < u(x) < 1 denotes the deflection of the membrane. This model has
been extensively studied, see [9], [10] in regards to the model and [6], [5], [7] for
mathematical aspects of (P )λ. It is well known (see above references) that there
exists some positive finite critical parameter λ∗ such that for all 0 < λ < λ∗, the
equation (P )λ has a smooth minimal stable (see below) solution uλ, while for λ > λ∗

there are no weak solutions of (P )λ (see [6] for a precise definition of weak solution).
Standard elliptic regularity theory yields that a solution u of (P )λ is smooth if and
only if supΩ u < 1. One can also show that λ 7→ uλ(x) is increasing and hence one
can define the extremal solution

u∗(x) := lim
λրλ∗

uλ(x),

which can be shown to be a weak solution of (P )λ∗ .
Recall that a smooth solution u of (P )λ is said to be minimal if any other solution

v of (P )λ satisfies u ≤ v a.e. in Ω. Such solutions are then semi-stable meaning that
the principal eigenvalue of the linearized operator

Lu,λ := −∆ − 2λ

(1 − u)3
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