RESULTS ON POSITIVE SOLUTIONS OF ELLIPTIC EQUATIONS WITH A CRITICAL HARDY-SOBOLEV OPERATOR*

DAOMIN CAO^{\dagger} AND YANYAN LI^{\ddagger}
Dedicated to Neil Trudinger with respect and friendship on the occasion of his sixty fifth birthday

Key words. Hardy-Sobolev operator, uniqueness, entire solutions.
AMS subject classifications. 35J20, 35J65

1. Introduction. Let $N \geq 3,1 \leq k<N$ and $\mathbb{R}^{N}=\mathbb{R}^{k} \times \mathbb{R}^{N-k}$. Write $x=(y, z) \in \mathbb{R}^{k} \times \mathbb{R}^{N-k}$. We are concerned with classifying non-negative solutions of

$$
\begin{equation*}
-\Delta u=\frac{u^{2^{*}(t)-1}(x)}{|y|^{t}}, \quad x \in \mathbb{R}^{N} \tag{1.1}
\end{equation*}
$$

where $0<t<\min \{2, k\}, 2^{*}(t)=\frac{2(N-t)}{N-2}$.
We will use $D^{1, p}\left(\mathbb{R}^{N}\right), 1 \leq p<N$, to denote the completion of $C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$, the set of C^{∞} functions with compact support in \mathbb{R}^{N}, under the norm $\|u\|_{D^{1, p}\left(\mathbb{R}^{N}\right)}:=\left(\int_{\mathbb{R}^{N}}|\nabla u|^{p}\right)^{\frac{1}{p}}$. By the Gagliado-Nirenberg-Sobolev inequality,

$$
\|u\|_{L^{\frac{p N}{N-p}\left(\mathbb{R}^{N}\right)}} \leq C(N, p)\|u\|_{D^{1, p}\left(\mathbb{R}^{N}\right)}
$$

Thus we use $D_{l o c}^{1,2}\left(\mathbb{R}^{N}\right)$ to denote those functions u which satisfy, on all compact subsets K of $\mathbb{R}^{N}, u \in L^{\frac{2 N}{N-2}}(K)$ and $\nabla u \in L^{2}(K)$. It is the same as $H_{l o c}^{1}\left(\mathbb{R}^{N}\right)$, another standard notation which denotes the set of functions u satisfying $u, \nabla u \in L^{2}(K)$ for all compact subsets K of \mathbb{R}^{N}.

A $D_{l o c}^{1,2}\left(\mathbb{R}^{N}\right)$ solution of (1.1) is in $L_{l o c}^{\infty}$. This can be proved by arguments similar to those used by Trudinger in [19] in proving the L^{∞} regularity of H^{1} solutions to the Yamabe equation, see [8] and [16] where Hölder regularity of solutions of (1.1) were also studied. Clearly a positive solution u of (1.1) is C^{∞} in $\{(y, z) \mid y \neq 0\}$. See [1], [4], [5], [7], [8], [10], [11], and the references therein for related studies.

Since u is superharmonic, non-negative and nonzero, it follows from the maximum principle (see, e.g. [13]) that

$$
\begin{equation*}
\inf _{|x| \leq 2} u(x)>0, \quad \inf _{|x| \geq 1}\left(|x|^{N-2} u(x)\right)>0 \tag{1.2}
\end{equation*}
$$

Our first result is

[^0]
[^0]: *Received July 24, 2008; accepted for publication July 31, 2008.
 ${ }^{\dagger}$ Institute of Applied Mathematics, AMSS, Chinese Academy of Sciences, Beijing 100080, P. R. China (dmcao@amt.ac.cn). Supported by the Fund of Distinguished Young Scholars of China and Innovative Funds of CAS in China.
 ${ }^{\ddagger}$ Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd., Piscataway, NJ 08854, USA (yyli@math.rutgers.edu). Partially supported by NSF in USA and NSFC in China.

