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1. Introduction. In this paper, we consider the question of the preservation of

convexity of the Cauchy problem for fully nonlinear integro-differential equation

(1.1) ut = F (∇2u,∇u, u, x, t) + Bu, (x, t) ∈ R
n × [0, T ],

where F = F (r, p, u, x, t) is a given function in Γ = Sn × R
n × R × R

n × [0, T ], Sn

denotes the space of real symmetric n × n matrices, and Bu is a integro-differential

operator as follows

(1.2) Bu = λ(t)

∫

1

0

(u(x+ ψ(x, t, η), t) − u(x, t) − ψ(x, t, η) · ∇u(x, t))dη,

here λ(t) is a given nonnegative function, ψ(x, t, η) is a given function in R
n× [0, T ]×

[0, 1].

Equations (1.1) are second order fully nonlinear integro-differential equations of

parabolic type. These equations are derived from the pricing problem of financial

derivatives and optimal portfolio selection problem in a market where underlying as-

sets prices are modeled by a Lévy process S(τ) (Chapter 9 in [14], see also [6], [16] and

[3]). A typical example for the European option pricing problem in one-dimensional

is as follows. Let (Wτ )τ≥0 be the standard Brownian motion, (Nτ )τ≥0 be Poisson

process with parameter λ and (Uj)j≥1 be a sequence of square integrable indepen-

dent, identically distributed random variables, with values in (−1,+∞). Assume the

Lévy process S(τ) evolves according to the following stochastic differential equation

(1.3) dS(τ) = S(τ)(µdτ + σdWτ + d(

Nτ
∑

j=1

Uj)),

where µ, σ are the drift and volatility respectively. Furthermore, we assume the

processes (Wτ )τ≥0, (Nτ )τ≥0, (Uj)j≥1 are independent. Let p̂(ξ) be the probability

density function of random variable U1, thus price function V (s, τ) of European option

with finite horizon T satisfies the following linear equation

(1.4)
∂V

∂τ
+
σ2

2
s2
∂2V

∂s2
+ (r − λk)s

∂V

∂s
− (r + λ)V + λ

∫ ∞

−1

V (s(1 + ξ), τ)p̂(ξ)dξ = 0,
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