LEVEL SET DYNAMICS AND THE NON-BLOWUP OF THE 2D QUASI-GEOSTROPHIC EQUATION*

J. DENG ${ }^{\dagger}$, T. Y. HOU^{\ddagger}, R. LI^{\S}, AND X. YU『

Abstract

In this article we apply the technique proposed in Deng-Hou-Yu [7] to study the level set dynamics of the 2D quasi-geostrophic equation. Under certain assumptions on the local geometric regularity of the level sets of θ, we obtain global regularity results with improved growth estimate on $\left|\nabla^{\perp} \theta\right|$. We further perform numerical simulations to study the local geometric properties of the level sets near the region of maximum $\left|\nabla^{\perp} \theta\right|$. The numerical results indicate that the assumptions on the local geometric regularity of the level sets of θ in our theorems are satisfied. Therefore these theorems provide a good explanation of the double exponential growth of $\left|\nabla^{\perp} \theta\right|$ observed in this and past numerical simulations.

Key words. Quasi-geostrophic equation, finite time blow-up, geometric properties, global existence

AMS subject classifications. Primary 76B03; Secondary 35L60, 35M10

1. Introduction. The study of global existence/finite-time blow-up of the twodimensional quasi-geostrophic (subsequently referred to as 2 D QG for simplicity) equation has been an active research area in the past ten years, partly due to its close connection to the 3D incompressible Euler equations (Constantin-Majda-Tabak [2], Cordoba [5], Cordoba-Fefferman [6]). The 2D QG equation has its origin in modeling rotating fluids on the earth surface (Pedlosky [10]). The equation describes the transportation of a scalar quantity θ :

$$
\begin{equation*}
D_{t} \theta \equiv \theta_{t}+u \cdot \nabla \theta=0 \tag{1}
\end{equation*}
$$

with initial conditions $\left.\theta\right|_{t=0}=\theta_{0}$. The relation between θ and the velocity u is given by

$$
\begin{equation*}
u=\nabla^{\perp} \psi, \quad \psi=(-\triangle)^{-\frac{1}{2}}(-\theta) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\nabla^{\perp} \psi \equiv\left(-\frac{\partial \psi}{\partial x_{2}}, \frac{\partial \psi}{\partial x_{1}}\right)^{T} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
(-\triangle)^{-\frac{1}{2}} \psi \equiv \int e^{2 \pi i x \cdot k} \frac{1}{2 \pi|k|} \hat{\psi}(k) \mathrm{d} k \tag{4}
\end{equation*}
$$

where $\hat{\psi}(k)=\int e^{-2 \pi i x \cdot k} \psi(x) \mathrm{d} x$ is the Fourier transform of $\psi(x)$.

[^0]
[^0]: *Received January 18, 2006; accepted for publication July 18, 2006.
 \dagger School of Mathematical Sciences, Fudan University, Shanghai, China (jdeng@fudan.edu.cn).
 \ddagger Applied and Computational Mathematics, California Institute of Technology, Pasadena, CA 91125, USA (hou@acm.caltech.edu).
 ${ }^{\S}$ Applied and Computational Mathematics, California Institute of Technology, Pasadena, CA 91125, USA (rli@acm.caltech.edu).

 『Department of Mathematics, University of California, Los Angeles, CA 90095, USA (xinweiyu @math.ucla.edu).

